Silicon optical fiber made practical

October 28, 2008

Scientists at Clemson University for the first time have been able to make a practical optical fiber with a silicon core, according to a new paper published in the current issue of the Optical Society's open-access journal, Optics Express.

Led by Professor John Ballato and including fiber pioneer Roger Stolen, the team of scientists was able to create this new fiber by employing the same commercial methods that are used to develop all-glass fibers, making silicon fibers viable alternatives to glass fibers for selected specialty applications. This advance ultimately should help increase efficiency and decrease power consumption in computers and other systems that integrate photonic and electronic devices.

Optical fibers carry an increasing fraction of phone calls, television programs and Internet traffic. The main advantage of using optical fibers is higher bandwidth, which means faster downloads from the Web, for example. The ability to produce silicon fibers commercially would create the opportunity for more compact devices with decreased power consumption in telecommunications and beyond.

"In essence, we've married optoelectronics with optical fibers," said Ballato. "In the past, we've needed one structure to process light and another to carry it. With a silicon fiber, for the first time, we have the ability to greatly enhance the functionality in one fiber."

Usually an optical fiber is made by starting with a glass core, wrapping it with a cladding made from a slightly different glass, and then heating the structure until it can be pulled out into long wires. This works well enough, but for some wavelengths of light, a core made of pure crystalline silicon, like the one developed by the Clemson team, would better carry signals. Additionally, crystalline silicon exhibits certain nonlinear properties (in which the output is not proportional to the input) that are many orders of magnitude larger than for conventional silica glass. This would, for example, allow for the amplification of a light signal or for the shifting of light from one wavelength to another. The development of a silicon fiber opens the way for signal processing functions that are currently done electronically or in separate optical circuits to be performed directly inside the fiber, which allows for more compact, efficient systems.

Some fibers have been made with a silicon core, but the Clemson version (with collaborators at UCLA, Northrop Grumman and Elmira College) is the first to employ standard mass-production methods, bringing them closer to commercial reality.

Right now the amount of energy lost when the lightwaves move down this silicon fiber is no better than for other fibers at the longer wavelengths, but Ballato says that the work so far has been a proof-of-concept, and he expects energy losses to decline signficantly with continued optimization.

Source: Optical Society of America

Explore further: Silicon photonics meets the foundry

Related Stories

Silicon photonics meets the foundry

September 9, 2015

Advances in microprocessors have transferred the computation bottleneck away from CPUs to better communications between components. That trend is driving the advance into optical interconnection of components, now moving ...

Can you kill a star with iron?

September 29, 2015

Since the energy required to fuse iron is more than the energy that you get from doing it, could you use iron to kill a star like our sun?

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.