Scientists 'see' how HIV matures into an infection

October 1, 2008

After improving the sensitivity of nuclear magnetic resonance (NMR), researchers at the University of Missouri actually watched the HIV-1 protease mature from an inactive form into an active infection. This process has never been directly visualized before. The findings appear today in the journal Nature.

"We actually saw the process occur," said Chun Tang, assistant professor of biochemistry in the MU School of Medicine. "This is something that has never been done before. We now understand more about the maturation process. We hope this will be a stepping stone to intervening before the infection progresses."

The HIV-1 protease is responsible for releasing the essential building blocks of an infective
HIV-1 viral particle, the culprit of AIDS. The HIV-1 protease is one of the primary targets of therapeutic treatment. However, the viral enzyme is constantly mutating in an effort to gain drug resistance.

"HIV-1 protease is not an active enzyme when it is first expressed in cells. It has to be activated to do its job," Tang said. "What we were able to see is how it self-activates from an immature form when the virus is not infective into a mature form when the virus gains infectivity."

Tang and his colleagues used a novel NMR method called paramagnetic resonance relaxation enhancement and were able to see the temporary joining of two halves of HIV-1 protease precursor, something that had not been accessible before using conventional techniques.

The researchers discovered that the 'tail,' or the flanking amino acid residues, of the HIV-1 protease precursor go through a temporarily formed tunnel where the tail is cut off. At this point, the protease becomes active, the maturation process proceeds, and the virus becomes infective.

"The more we understand about the virus, especially about the maturation into infection, the more we can do to identify novel therapeutics," Tang said.

Citation: The study, "Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease," was published today in the journal Nature.

Source: University of Missouri-Columbia

Related Stories

Recommended for you

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Model shows how surge in wealth inequality may be reversed

July 30, 2015

(Phys.org)—For many Americans, the single biggest problem facing the country is the growing wealth inequality. Based on income tax data, wealth inequality in the US has steadily increased since the mid-1980s, with the top ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.