Proteins involved in blood vessel dysfunction in type 2 diabetes are identified

Oct 06, 2008

According to the American Heart Association, three-fourths of people with diabetes die of some form of heart or blood-vessel disease. Previous studies have shown that cardiac function is compromised and cardiovascular diseases are increased in people with type 2 diabetes. Before vascular diseases develop in diabetics, blood-vessel cell dysfunction occurs. Using precise microscopes, University of Missouri researchers are dissecting coronary microvessels and testing which proteins are responsible for inflammation that causes blood-vessel dysfunction. By identifying the proteins that play important roles in blood-vessel dysfunction, they hope to develop new treatments for blood-vessel dysfunction in people with type 2 diabetes.

"We believe that understanding blood-vessel dysfunction in diabetes is critical because the progression of vascular diseases may be significantly reduced if dysfunction is corrected," said Cuihua Zhang, an investigator in the Dalton Cardiovascular Research Center and associate professor of internal medicine in the MU School of Medicine. "The results of our studies may provide new approaches for the treatment of blood-vessel diseases and disorders in type 2 diabetes, such as the possible use of antibodies that work to stop the proteins responsible for inflammation."

Zhang and other researchers tested their hypothesis that tumor necrosis factor-α (TNF-α), a signaling protein involved in inflammation, was responsible for blood-vessel dysfunction in type 2 diabetes. They observed that diabetic mice had elevated levels of TNF. When diabetic mice lacked TNF, their blood vessels functioned normally. They also observed that advanced glycation end products and their receptors (AGE/RAGE), which are proteins and lipids that are thought to contribute to various blood vessel complications, amplified TNF production in diabetes. In patients with diabetes, AGEs accumulate more quickly than normal in the blood and arteries.

"We found that the overproduction of AGE and RAGE contributes to blood-vessel dysfunction in type 2 diabetes," Zhang said. "Changes in the blood vessels caused by these proteins cause oxidative stress and vascular dysfunction that leads to diseases such as heart disease and stroke."

Source: University of Missouri-Columbia

Explore further: Doctors' checklist could help decrease length of COPD patients' hospital stay

Related Stories

Architects to hatch Ecocapsule as low-energy house

11 hours ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

California farmers agree to drastically cut water use

14 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

15 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Recommended for you

Score IDs patients with upper extremity DVT at low risk

5 hours ago

(HealthDay)—For patients with upper-extremity deep vein thrombosis (DVT), six easily available factors can be used to create a score that identifies those at low risk of adverse events during the first ...

Combined drug treatment combats kidney disease

15 hours ago

A recent discovery by drug researchers whereby coupling specific cell membrane receptors has altered kidney cell function has triggered a re-think of how to treat chronic kidney disease (CKD) more effectively.

Active substance targeting dreaded hospital germs

15 hours ago

In the German Center for Infection Research (DZIF), scientists have conducted clinical studies on an active substance against the dreaded hospital pathogen Staphylococcus aureus: a highly effective protein from bacteriophages ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.