Newly-discovered mechanism can explain the Beckwith-Wiedemann syndrome

October 24, 2008

Researchers from Uppsala University have discovered a mechanism that silences several genes in a chromosome domain. The findings, published in today's on-line issue of Molecular Cell, have implications in understanding the human disorder Beckwith-Wiedemann syndrome.

In mammals the cells contain two copies of each chromosome, one inherited from the mother and one from the father. The genes on the chromosomes can either be active or inactive. If a gene is active on the maternal chromosome, the corresponding gene is usually active also on paternal chromosome.

However, in some domains of the chromosome the activity is shut down on one of the chromosomes but not on the other. The genes in these domains cannot be activated the normal way but are completely silenced. The present study shows for the first time how this silencing of several genes on a chromosome is accomplished.

The research group, led by Chandrasekhar Kanduri, has studied a domain with several silenced genes on chromosome 7 in the mouse. The corresponding domain with silenced genes is located on the human chromosome 11. When part of this domain is transcribed a long RNA molecule, Kcnq1ot1-RNA, is formed. This RNA does not give rise to any protein, instead it mediates the silencing of eight to ten genes in a much larger area on the chromosome. Based on their findings the researchers have suggested a model for how this is accomplished. The Kcnq1ot1-RNA binds to the DNA in the domain and recruits specific enzymes that chemically modify DNA-binding proteins. This modification makes the DNA inaccessible for transcription and thereby the genes cannot be activated. In addition, the Kcnq1ot1-RNA targets the silenced domain to a specific area in the cell nucleus. There it is protected during cell division and the genes will stay silenced also in the daughter cells.

– We show for the first time how a long RNA molecule can establish and maintain silencing of multiple genes in a large domain on the chromosome, says Chandrasekhar Kanduri. The popular belief is that it is only a gene located in the same area as where the long RNA molecule is transcribed from that can be silenced.

This mechanism is important for understanding the genetic disorder Beckwith-Wiedemann Syndrome. In this condition silencing of the chromosome 11 domain does not function properly and both copies of the genes in the domain become inactive, instead of just one. Less protein is produced from the genes, leading to the excess growth characteristics associated with the syndrome: enlargement of organs in the foetus and an increased risk for tumours in the affected organs.

Source: Uppsala University

Explore further: Two key proteins preserve vital genetic information

Related Stories

Two key proteins preserve vital genetic information

August 22, 2016

Cancer is often driven by various genetic mutations that are acquired through changes to a person's DNA over time. These alterations can occur at the chromosome level if the proteins are not properly organized and segregated ...

Scientists untangle Barr body of inactive X chromosome

July 21, 2016

Scientists at UMass Medical School, the Institut Curie in Paris and Stanford University, have taken a detailed look inside the small, densely packed structure of the inactive X chromosome found in female mammals called the ...

Watching 'jumping genes' in action

June 13, 2016

"Jumping genes" are ubiquitous. Every domain of life hosts these sequences of DNA that can "jump" from one position to another along a chromosome; in fact, nearly half the human genome is made up of jumping genes. Depending ...

Discovery reveals chromosomes organize into 'yarns'

April 11, 2012

Chromosomes, the molecular basis of genetic heredity, remain enigmatic 130 years after their discovery in 1882 by Walther Flemming. New research published online in Nature by the team of Edith Heard, PhD, from the Curie Institute ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.