Mini-laboratory gets megaproductive

October 31, 2008
Mini-laboratory gets megaproductive
Left: the capillary electrophoresis chip developed by Zalewski. Right: separation of a mixture of rhodamine B and fluorescein. The substances are separated in two dimensions and come out in a wavelike movement.

(PhysOrg.com) -- Dawid Zalewski of the University of Twente, Netherlands, has developed a mini-laboratory on a chip that can purify biological mixtures continuously. This is very different from the usual method that can only process small quantities at a time. In fifteen minutes, the PhD student’s chip processes no less than 25,000 times as much liquid as a ‘normal chip’ in a single cycle. Zalewski was awarded his doctorate on 24 October at the faculty of Science and Technology.

Lab-on-a-chip technology, which involves complete chemical laboratories the size of a chip, is on the rise. Many of these mini-laboratories are able to separate mixtures - of biological substances, for instance. This usually occurs with the aid of capillary electrophoresis; that is, a mixture is led through a thin tube over which a high voltage is applied. The voltage causes the components in the mixture to move through the tube. The size, shape and charge of the molecules affect the speed with which they move. The components that move the fastest are the first to reach the end of the tube and can be collected there - separately from the other molecules.

Dawid Zalewski has developed a new form of capillary electrophoresis that can separate substances continuously: synchronized continuous-flow zone electrophoresis. In a quarter of an hour this method can process around five microlitre of liquid. This does not sound like very much, but a regular capillary electrophoresis chip can only process a couple of hundred picolitre of liquid in a cycle. This tiny quantity is not a problem if, for example, you only want to show whether a certain substance is present in a mixture. But if you want to process the pure substance further, this is a fundamental limitation. Zalewski’s chip is not limited in this way and can process 25,000 times as much liquid as a normal chip in a single cycle, in a quarter of an hour.

No mechanical components

The point of departure in the method developed by Zalewski was that the separation would only take place electrokinetically and that there would be no mechanical components, such as tiny pumps, on the chip. After all, mechanical components break more quickly and, furthermore, pumps are difficult, and therefore expensive, to produce at this scale.

Zalewski’s method uses an additional difference in voltage, perpendicular to the existing electrical field. As a result, the substances are not only separated in the horizontal direction, but also in the vertical direction. Since the additional difference in voltage is not constant but changes in time, the pure substances come out in a wavelike movement. The collector, the part of the chip that collects the pure substance, moves up and down with this wave movement.

Incidentally, the PhD student has already made further modifications to his chip. The improved version has a second collector so that the chip can separate two different pure substances simultaneously.

Provided by Universiteit Twente

Explore further: A step closer to artificial cell division—by blowing bubbles

Related Stories

Samsung aid for sick workers comes with conditions, secrecy

December 11, 2015

Samsung's hopes of ending years of acrimony over whether its computer chip factories caused cancer have hit a hitch: some sickened workers and their families say they'll never accept its highly conditional offer of financial ...

Shrinking medical labs onto tiny chips

September 26, 2006

According to Dongqing Li, just about anything you can do in a medical lab, he can do faster, cheaper and better with a device that fits nicely in the palm of your hand.

Recommended for you

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Chromosomes reconfigure as cell division ends

February 5, 2016

Cellular senescence—when a cell can no longer divide—is a programmed stage in a cell's life cycle. Sometimes, as in aging, we wish it didn't happen so much and sometimes, as in cancer, we wish it would happen more. Given ...

Online shopping might not be as green as we thought

February 5, 2016

Logic suggests that online shopping is "greener" than traditional shopping. After all, when people shop from home, they are not jumping into their cars, one by one, to travel to the mall or the big box store.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.