When under attack, plants can signal microbial friends for help

October 17, 2008
The green represents the beneficial bacterium Bacillus subtilis, which has formed a biofilm on the Arabidopsis root surface. Credit: University of Delaware/Thimmaraju Rudrappa

Researchers at the University of Delaware have discovered that when the leaf of a plant is under attack by a pathogen, it can send out an S.O.S. to the roots for help, and the roots will respond by secreting an acid that brings beneficial bacteria to the rescue.

The finding quashes the misperception that plants are "sitting ducks"--at the mercy of passing pathogens--and sheds new light on a sophisticated signaling system inside plants that rivals the nervous system in humans and animals.

The research was led by Harsh Bais, assistant professor of plant and soil sciences at UD, former postdoctoral researcher Thimmaraju Rudrappa, who is now a research scientist at the DuPont Co., Kirk Czymmek, associate professor of biological sciences and director of UD's Bio-Imaging Center, and Paul Paré, a biochemist at Texas Tech University.

The study is reported in the November issue of Plant Physiology and also is featured on the journal's cover. Rudrappa is the lead author of the research paper.

"Plants are a lot smarter than we give them credit for," says Bais from his laboratory at the Delaware Biotechnology Institute.

"People think that plants, rooted in the ground, are just sitting ducks when it comes to attack by harmful fungi or bacteria, but we've found that plants have ways of seeking external help," he notes.

In a series of laboratory experiments, the scientists infected the leaves of the small flowering plant Arabidopsis thaliana with a pathogenic bacterium, Pseudomonas syringae. Within a few days, the leaves of the infected plants began yellowing and showing other symptoms of disease.

However, the infected plants whose roots had been inoculated with the beneficial microbe Bacillus subtilis were perfectly healthy.

Farmers often add B. subtilis to the soil to boost plant immunity. It forms a protective biofilm around plant roots and also has antimicrobial properties, according to Bais.

Using molecular biological tools, the scientists detected the transmission of a long-distance signal, a "call for help," from the leaves to the roots in the plants that had Bacillus in the soil. The roots responded by secreting a carbon-rich chemical--malic acid.

All plants biosynthesize malic acid, Bais explains, but only under specific conditions and for a specific purpose--in this case, the chemical was actively secreted to attract Bacillus. Magnified images of the roots and leaves showed the ratcheted-up defense response provided by the beneficial microorganisms.

Czymmek captured the definitive proof using a state-of-the-art LSM 510 DUO laser scanning confocal microscope in UD's Bio-Imaging Center. UD is among only a few universities that own one of these million-dollar instruments.

"A plant is a challenge to image because at least half of it is below ground in the form of roots," Czymmek notes. "Here at UD, we use modern technologies including hydroponic growth systems with see-through chambers and sophisticated optical techniques that will enhance the image clarity when visualizing plants and the pathogens attacking them."

Bais and his colleagues are now working to determine what the aerial signal is from the infected leaf to the root using different pathogen-associated molecular markers (PAMPs).

The research not only sheds light on the remarkable signaling system in plants, but also is important to understand how invasive plants conquer new territory with the aid of plant microbes.

"Plants can't move from where they are, so the only way they can accrue good neighbors is through chemistry," Bais notes.

Source: University of Delaware

Explore further: Scientists unravel root cause of plant twists and turns

Related Stories

Scientists unravel root cause of plant twists and turns

September 29, 2015

To feed the world's burgeoning population, producers must grow crops in more challenging terrain – where plant roots must cope with barriers. To that end, Cornell University physicists and Boyce Thompson Institute plant ...

India vows to cut carbon intensity in Paris pledge

October 2, 2015

As the last major economy to submit a target for a global climate pact, India is pledging to reduce the intensity of its carbon emissions and boost the share of electricity produced from sources other than fossil fuels to ...

Recommended for you

Curiosity's drill hole and location are picture perfect

October 5, 2015

On Tuesday, Sept. 29, NASA's Curiosity Mars rover drilled its eighth hole on Mars, and its fifth since reaching Mount Sharp one year ago. The drilling of the hole 2.6-inches (65 millimeters) deep in a rock the team labeled ...

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

Brightness-equalized quantum dots improve biological imaging

October 5, 2015

Researchers at the University of Illinois at Urbana-Champaign have introduced a new class of light-emitting quantum dots (QDs) with tunable and equalized fluorescence brightness across a broad range of colors. This results ...

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects that missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.