New knowledge about thermoelectric materials could give better energy efficiency

October 7, 2008

Thermoelectric materials can be assembled into units, which can transform the thermal difference to electrical energy or vice versa – electrical current to cooling. An effective utilization requires however that the material supplies a high voltage and has good electrical, but low thermal conductivity.

- The new knowledge explains exactly why some thermoelectric materials can have the desired low thermal conductivity without degrading the electrical properties. This can be crucial for the conversion of wasted heat, for example, from vehicle exhaust emissions. Leading car manufacturers are now working to develop this possibility and the first models are close to production. The technology is expected to give the cars considerably improved fuel economy, explains Bo B. Iversen, Professor at iNANO at the University of Århus. The new knowledge can also contribute to the development of new cooling methods, so that one avoids the most common, but very environmentally damaging greenhouse gas (R-134a). All of which is a gain for the environment.

In the Nature Materials article the researchers have studied one of the most promising thermoelectric materials in the group of clathrates, which create crystals full of 'nano-cages'.

"By placing a heavy atom in each nano-cage, we can reduce the crystals' ability to conduct heat. Until now we thought that it was the heavy atoms random movements in the cages that were the cause of the poor thermal conductivity, but this has been shown to not be true," explains Asger B. Abrahamsen, senior scientist at Risø-DTU.

The researchers have used the technique of neutron scattering, which gives them opportunity to look into the material and see the atoms' movements.

"Our data shows that, it is rather the atoms' shared pattern of movement that determines the properties of these thermoelectric materials. A discovery that will be significant for the design of new materials that utilize energy even better," explains Kim Lefmann, associate professor at the Nano-Science Center, the Niels Bohr Institute at the University of Copenhagen.

Source: University of Copenhagen

Explore further: Development of a new thermoelectric material for a sustainable society

Related Stories

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

The quantum sniffer dog

October 24, 2016

As humans, we sniff out different scents and aromas using chemical receptors in our noses. In technological gas detection, however, there are a whole host of other methods available. One such method is to use infrared lasers, ...

Professor creates self-folding, origami robots

October 25, 2016

Sam Felton envisions a world in which temporary housing would autonomously constructed, and origami robots would fold themselves into 3-D machines for space exploration. Based on the research he's done—and the origami robots ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.