New knowledge about thermoelectric materials could give better energy efficiency

October 7, 2008

Thermoelectric materials can be assembled into units, which can transform the thermal difference to electrical energy or vice versa – electrical current to cooling. An effective utilization requires however that the material supplies a high voltage and has good electrical, but low thermal conductivity.

- The new knowledge explains exactly why some thermoelectric materials can have the desired low thermal conductivity without degrading the electrical properties. This can be crucial for the conversion of wasted heat, for example, from vehicle exhaust emissions. Leading car manufacturers are now working to develop this possibility and the first models are close to production. The technology is expected to give the cars considerably improved fuel economy, explains Bo B. Iversen, Professor at iNANO at the University of Århus. The new knowledge can also contribute to the development of new cooling methods, so that one avoids the most common, but very environmentally damaging greenhouse gas (R-134a). All of which is a gain for the environment.

In the Nature Materials article the researchers have studied one of the most promising thermoelectric materials in the group of clathrates, which create crystals full of 'nano-cages'.

"By placing a heavy atom in each nano-cage, we can reduce the crystals' ability to conduct heat. Until now we thought that it was the heavy atoms random movements in the cages that were the cause of the poor thermal conductivity, but this has been shown to not be true," explains Asger B. Abrahamsen, senior scientist at Risø-DTU.

The researchers have used the technique of neutron scattering, which gives them opportunity to look into the material and see the atoms' movements.

"Our data shows that, it is rather the atoms' shared pattern of movement that determines the properties of these thermoelectric materials. A discovery that will be significant for the design of new materials that utilize energy even better," explains Kim Lefmann, associate professor at the Nano-Science Center, the Niels Bohr Institute at the University of Copenhagen.

Source: University of Copenhagen

Explore further: Low-cost wafers for solar cells

Related Stories

Low-cost wafers for solar cells

October 1, 2015

Silicon wafers are the heart of solar cells. However, manufacturing them is not cheap. Over 50 percent of the pure silicon used is machined into dust. A new manufacturing technique developed by Fraunhofer researchers puts ...

Jupiter's moon Europa

September 30, 2015

Jupiter's four largest moons – aka. the Galilean moons, consisting of Io, Europa, Ganymede and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.