Researchers hone in on new strategy to treat common infection

October 27, 2008

Researchers at Georgetown University Medical Center (GUMC) have successfully tested a genetic strategy designed to improve treatment of human infections caused by the yeast Candida albicans, ranging from diaper rash, vaginitis, oral infections (or thrush which is common in HIV/AIDS patients), as well as invasive, blood-borne and life-threatening diseases.

Their findings confirm that inhibiting a key protein could provide a new drug target against the yeast, which inhabits the mucous membranes of most humans. The research was presented today at the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy/46th Annual Meeting of the Infectious Diseases Society of America (ICAAC/IDSA) in Washington, DC.

"This is a genetically intelligent approach to target identification and drug design," says the study's lead author, Richard Calderone, PhD, professor and chair of the department of microbiology and immunology and co-director of the PhD program in the global infectious disease program at GUMC.

"Candida infections are often treatable, however, in patients that are immunocompromised following cancer chemotherapy, bone marrow transplantation, or surgery, diagnosis is often delayed, postponing therapy," he says. "Also when drug-resistant yeast pathogens cause the infection, clinical management of the patient becomes a problem."

Candida invasive, blood-borne infections are the fourth most common hospital-acquired infection in the United States, costing the healthcare system about $1.8 billion each year, Calderone says.

"More drug resistance is being seen clinically, so there is significant room for improvement in the therapies used today," he says

This study continues research in which Calderone and his colleagues identified a protein, the product of the Ssk1 gene that Candida needs to infect its host. To date, this protein has not been found in humans or in animals, which means it could be "targeted" with a novel drug without producing toxicity because such an agent should only attack the fungus.

The researchers found that if the Ssk1 gene is deleted from Candida albicans, the "triazole" drugs that are now used to treat these diseases are much more effective in the laboratory. "This allows the triazole drugs to do their job," Calderone says. "We propose that this finding might lead to other, possibly more effective, treatment options."

In this study, the researchers used a gene microarray analysis to further understand what knocking out the Ssk1 gene does to the organism, and they discovered that the gene is critical to the pathogenic nature of the fungi.

What this means is that an Ssk1 inhibitor might work in synergy with a triazole or perhaps as an effective stand-alone drug to treat Candida infections, the researchers say. If it works in Candida, it may have broader activity in other pathogens because Ssk1p is found in other fungi.

"Using the genome of the organism to find genes to target is a logical approach to drug design," he says. The researchers are now working with other groups to find the right agent to target the Ssk1protein.

Source: Georgetown University Medical Center

Explore further: China 'clone factory' scientist eyes human replication

Related Stories

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

New mechanisms of self-organization in living cells

November 24, 2015

Chromosomes are structures inside cell nuclei that carry a large part of the genetic information and are responsible for its storage, transfer and implementation. Chromosomes are formed from a very long DNA molecule—a double ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 26, 2008
"hone in or home in?

Avoid using the incorrect hone in. Hone is a transitive verb meaning "sharpen" (hone a blade) or, in a figurative sense, "perfect or refine" (I honed my ideas before publishing them). It is the verb home, generally intransitive, whose meanings include "return home accurately," that makes sense with the particle in: He homed in on his opponent's weaknesses."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.