Groundbreaking discovery may lead to stronger antibiotics

October 1, 2008

The last decade has seen a dramatic decline in the effectiveness of antibiotics, resulting in a mounting public health crisis across the world. A new breakthrough by University of Virginia researchers provides physicians and patients a potential new approach toward the creation of less resistant and more effective antibiotics.

"As bacteria become more resistant to our current classes of antibiotics, there also has been a general lack of new targets for developing novel antibiotics," says John H. Bushweller, Ph.D., who led a new study appearing in the September 26, 2008, issue of Molecular Cell. "This is a dangerous situation, but our discovery provides a starting point for a completely novel class of antibiotics, acting via a different mechanism."

What Dr. Bushweller, professor of molecular physiology and biological physics, and fellow researchers at the UVA Health System and Harvard Medical School have determined is the structure of a particular integral membrane enzyme, called DsbB – one of the many proteins that reside in cell membranes. These so-called integral membrane proteins are important, because they account for roughly one-third of any genome in the human body and are the targets of more than half of all currently used drugs.

Until now, scientists have been unable to acquire much structural information about these types of proteins; yet determining a protein's structure is vital in order to understand how it functions and how it can potentially operate as a drug target.

The study led by Dr. Bushweller represents the first time scientists have cracked the code required to solve a certain class of membrane protein structure by using nuclear magnetic resonance (NMR) spectroscopy, the preeminent technique for determining the structure of organic compounds. This novel NMR approach now gives the scientific community a brand new platform for attempting to determine structures of other important membrane proteins.

"What this means is that not only did we establish NMR spectroscopy as a potent tool for the characterization of the structure, dynamics and function of integral membrane proteins, but we also discovered that the DsbB enzyme is an exciting potential new target agent for the creation of novel antibiotics," says Dr. Bushweller. "This could give us the roadmap to an entirely new class of antibiotics."

Source: University of Virginia

Explore further: Scientists model outer membrane of 12 bacterial species to speed new drugs for 'bad bugs'

Related Stories

Peptides vs. superbugs

October 18, 2016

Several peptides have an antibacterial effect - but they are broken down in the human body too quickly to exert this effect. Empa researchers have now succeeded in encasing peptides in a protective coat, which could prolong ...

How drug-resistant bacteria build defences

October 4, 2016

Improved understanding of the way hundreds of different types of disease-causing bacteria operate could help pave the way to tackling their effects, according to leading scientists.

Bacterial membrane vesicles can cause preterm birth

September 1, 2016

Approximately 20-30% of women carry bacteria called group B streptococcus (GBS) in their vagina or rectum. In most cases, these bacteria cause no problems, but GBS has been linked to complications during pregnancy, including ...

Sabotaging bacteria propellers to stop infections

August 31, 2016

When looking at bacteria, you typically see also flagella: long hairs that protrudes from the bacteria's body. The key function of the flagella is movement – what scientists call 'motility'. The flagella give the bacteria ...

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 01, 2008
Yay, let's give the bacteria a whole new template to evolve resistance to, making them even harder to combat...

When you look at it, this definitely seems to be a war we can only lose, and lose, and lose. Vaccination seems so much more effective, given that it uses the body's own system (which evolves also). Why not develop better ways to analyse pathogens and manufacture vaccines quickly?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.