A glacier's life

Oct 29, 2008

EPFL researchers have developed a numerical model that can re-create the state of Switzerland's Rhône Glacier as it was in 1874 and predict its evolution until the year 2100. This is the longest period of time ever modeled in the life of a glacier, involving complex data analysis and mathematical techniques.

The work will serve as a benchmark study for those interested in the state of glaciers and their relation to climate change.

The Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich has been a repository for temperature, rainfall and flow data on the Rhône Glacier since the 1800s. Researchers there have used this data to reconstruct the glacier's mass balance, i.e. the difference between the amount of ice it accumulates over the winter and the amount that melts during the summer(see 1 below). Now, led by professor Jacques Rappaz from EPFL's Numerical Analysis and Simulations group, a team of mathematicians has taken the next step, using all this information to create a numerical model of glacier evolution, which they have used to simulate the history and predict the future of Switzerland's enormous Rhone glacier over a 226-year period.

The mathematicians developed their model using three possible future climate scenarios. "We took the most moderate one, avoiding extremely optimistic or pessimistic scenarios," explains PhD student Guillaume Jouvet. With a temperature increase of 3.6 degrees Celsius and a decrease in rainfall of 6% over a century, the glacier's "equilibrium line", or the transition from the snowfall accumulation zone to the melting zone (currently situated at an altitude of around 3000 meters), rose significantly. According to this same scenario, the simulation anticipates a loss of 50% of the volume by 2060 and forecasts the complete disapearance of the Rhône glacier around 2100.

"It is the first time that the evolution of a glacier has been numerically simulated over such a long period of time, taking into account very complex data," notes EPFL mathematician Marco Picasso. Even though measurements have been taken for quite some time, the sophisticated numerical techniques that were needed to analyze them have only been developed very recently.

To verify their results, the mathematicians have also reconstructed a long-vanished glacier in Eastern Switzerland. They were able to pinpoint the 10,000-year-old equilibrium line from vestiges of moraines that still exist (see 2 below).

The scientists' work will be of interest not only to climate change experts, but also to those to whom glaciers are important – from tourism professionals to hydroelectric energy suppliers. Picasso adds that this numerical model could be applied to the polar icecaps. "Mathematics and numerical methods have an important role to play in our society," he enthuses. "They allow us to simulate with great confidence a large number of environmental phenomena."

This research, conducted by the team in Zurich was published in 2008 in the Journal of Geophysical Research.

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: NASA looks at Tropical Depression 10W's most powerful storms

Related Stories

Recommended for you

Experiments open window on landscape formation

12 hours ago

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

NASA image: Canadian wildfires continue

12 hours ago

Canada is reeling from an early fire season this year as dozens of fires ravage at least three provinces of the country. All of the following reports are as of July 2, 2015.

The very hungry sea anemone

14 hours ago

The surprising culinary preferences of an abyssal sea anemone have been unveiled by a team of scientists from the National Oceanography Centre (NOC).

How Virginia is preparing for the next quake

18 hours ago

The 5.8 magnitude earthquake that struck the commonwealth in 2011 was a wake-up call for many Virginians. Originating deep under Louisa County, the quake was felt as far north as Canada and caused significant ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
5 / 5 (2) Oct 29, 2008
Why would a 3.6 degree increase in temperature coincide with a 6% decrease in rainfall for 100 years?

The initial decisions they make determine the final outcome. They could do 10000 scenarios where they change the temperature slightly or the rainfall slightly without ever having the model tell them anything.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.