New research may help to design better gene therapy vectors

October 7, 2008

( -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural and Molecular Biology, describes the structure of the viral fusion protein gp64, which is involved in the mechanism which viruses use to invade host cells. In the past, Bacloviruses have been suggested as possible gene therapy vectors due to the way in which they enter host cells, but there has been little evidence which explain these properties up to now.

Viruses are unable to grow or reproduce outside a host cell. Entry of a virus into a living cell is driven by molecules on the virus' envelope known as viral fusion proteins. Bacloviruses are a group of viruses which primarily infect invertebrate cells. One of the viral fusion proteins found on Baclovirus is gp64.

It is necessary for cell entry and mediates receptor binding, a decrease in pH which triggers membrane fusion and facilitates Baclovirus entry into many types of mammalian cells. Another interesting property of gp64 is that it can also easily incorporate peptides into the virus DNA. Taken together, this suggests that Baclovirus may be a useful gene-delivery vector.

Gene therapy is the insertion of genes into an individual's cells and tissues to treat a disease in which defective genes are replaced with functional ones. In the future, gene therapy may be able to provide potential cures to diseases such as cystic fibrosis, hemophilia, muscular dystrophy and sickle cell anemia. In order for the therapy to work, the gene must be incorporated into the genome and a carrier, or vector, must be used. One of the problems with the use of gene therapy at the moment is that the vectors available are largely considered to be unsafe, and this research may therefore offer ways of making safer and more specific gene therapy vectors.

The research was carried out in collaboration with scientists at the University of Oxford and EMBL Grenoble. Professor Ian Jones from the School of Biological Sciences at the University of Reading said "this research has greatly increased our understanding about viral fusion proteins and how viruses get into cells. We hope that in the future this may lead to safer and more specific gene therapy vectors."

Provided by University of Reading

Explore further: Human gene prevents regeneration in zebrafish

Related Stories

Human gene prevents regeneration in zebrafish

November 18, 2015

Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body's own anti-cancer security ...

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

New method for imaging marmoset brains

November 19, 2015

Researchers at the RIKEN Brain Science Institute in Japan have developed a new system for imaging the activity of individual neurons in the marmoset brain. Published in Cell Reports, the study shows how amplifying genetically ...

Protein complex links cellular metabolism to gene expression

October 29, 2015

Researchers in the Workman Lab at the Stowers Institute for Medical Research have identified a link between cellular metabolism and gene expression, one with potentially far-reaching implications for cancer risk prediction ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.