New invention that could change design of future memory storage devices

October 8, 2008

A research team at Singapore A*STAR's Data Storage Institute (DSI) has invented a new phase change material that has the potential to change the design of future memory storage devices.

Phase change materials are substances that are capable of changing their structure between amorphous and crystalline at high speed. Currently, these materials are used to make Phase change memory (PCM), the most promising alternative to replace FLASH memory.

This research advance was given special mention in Nature's Asia Materials journal. In the August issue of Nature Photonics journal, another DSI research achievement -- the creation of a needle of longitudinally polarized light in vacuum using binary optics – is featured.

Conventionally, PCM is worked by changing phase change materials' structure through applying an electric current. Now, phase change might be effected by means of switching the new phase change materials by using magnetic fields.

The DSI research team led by Shi Luping, Ph.D., created this first phase change magnetic material by introducing iron atoms into Germanium-Antimony-Tellurium alloys (or GeSbTe) containing non-magnetic elements.

"The addition of magnetic properties to phase change materials opens doors to possible new applications, such as the possibility of integrating phase change memory into spintronic technology [also known as magnetoelectronics], and positions it as the next generation of storage technology to look out for," said Chong Tow Chong, Ph.D., DSI Executive Director.

Research is underway to develop materials that could be switched by application of magnetic fields. Said Dr. Shi, "As a next step, we will explore phase change spintronics and its applications. Because of the new degree of freedom of spin we introduced, the possible applications include novel devices with multiple functions, such as memories, sensors and logic devices."

Source: Agency for Science, Technology and Research (A*STAR), Singapore

Explore further: Strong churning technique produces more uniformly structured large aluminum casts

Related Stories

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Combination of insulation and thermal mass

December 1, 2016

When the summer sun burns in the sky, phase change materials (PCM) integrated in building envelopes absorb the heat – it remains cool inside. When it is getting colder outside, the materials give off heat. Several grams ...

Materials made of self-spinning particles

December 5, 2016

Matter is either gas, liquid or solid based on how its molecules respond to temperature and pressure. But what if the building blocks are self-spinning particles instead of ordinary molecules? Theoretical physicists found ...

Black phosphorus doesn't mind de-aerated water

December 1, 2016

Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science(IBS) have discovered that one of graphene's competitors, black phosphorus, is inert to water deprived of oxygen, ...

Recommended for you

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

A nano-roundabout for light

December 8, 2016

Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

20nmon
1 / 5 (1) Oct 08, 2008
Is the current better used by heating or generating the magnetic field? The magnetic field usually requires an adjacent wire that takes up extra space.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.