Don't stress! Bacterial crisis command center revealed

October 2, 2008
Don't stress! Bacterial crisis command center revealed
An image of a 'stressosome' from inside a bacteria cell

A bacteria cell's 'crisis command centre' has been observed for the first time swinging into action to protect the cell from external stress and danger, according to new research out today (3 October) in Science.

The research team behind today's study says that finding out exactly how bacteria respond and adapt to stresses and dangers is important because it will further their understanding of the basic survival mechanisms of some of the most resilient, hardy organisms on Earth.

The crisis command centre in certain bacteria cells is a large molecule, dubbed a 'stressosome' by the scientists behind today's research. These cells have around 20 stressosomes floating around inside them, and although scientists knew they played an important role in the cell's response to stressful situations, the complexities of this process had not been fully understood until now.

If a bacteria cell finds itself in a dangerous situation - for example, if the temperature or saltiness of the bacteria's environment reach dangerous levels which threaten the survival of the bacteria -a warning signal from the cell's surface is transmitted into the cell.

Using cutting edge electron microscopy imaging techniques the authors of the new research observed that the stressosomes receive this warning signal, and in response several proteins called RSBT break away from the large stressosome. This breakaway triggers a cascade of signals within the cell which results in over 150 proteins being produced - proteins which enable the cell to adapt, react and survive in its new environment.

Professor Marin van Heel from Imperial College London's Department of Life Sciences, one of the corresponding authors of the study, explains: "The cascade of events inside bacteria cells that occurs as a result of stressosomes receiving warning signals leads to particular genes inside the cell being transcribed more. This means that some genes already active inside the cell are 'turned up' so that levels of particular proteins in the cell increase. These changes to the protein make-up of the cell enable it to survive in a hostile or challenging environment."

Dr Jon Marles-Wright from Newcastle University says: "Our work shows that cells respond to signals much like a dimmer on a light switch. Now we'll be building on this to work out how nature controls that dimmer switch. We wouldn't have been able to carry out this work without access to the Diamond synchrotron Light Source which has enabled us to examine the structures of individual stressosome proteins at atomic resolution."

Dr Tim Grant, one of Imperial's post doctoral researchers, adds that the key to bacteria cells' success at surviving in rapidly changing environments is their speedy response: "The cell's stressosomes are very good at their job as crisis command centres because they provide a very fast effective response to danger. The chain reaction they kickstart produces results really quickly which enables bacteria to adapt to changes in their surroundings almost instantaneously."

The team is now planning to collect very high resolution data of the stressosome complex on the world's newest high-resolution cryo electron microscope, the FEI "KRIOS" that has just been installed in the Max Planck Institute in Martinsried, Germany. Improving the resolution of the stressosome structure by a factor of two will lead to a resolution range normally only attainable by X-ray crystallography and will allow the researchers to directly see the amino-acid components of this fascinating complex.

Source: Imperial College London

Explore further: Mimicking diet changes of global travel reveals clues to gut health​

Related Stories

Deep-diving whales could hold answer for synthetic blood

September 25, 2015

The ultra-stable properties of the proteins that allow deep-diving whales to remain active while holding their breath for up to two hours could help Rice University biochemist John Olson and his colleagues finish a 20-year ...

Study adds to evidence that viruses are alive

September 25, 2015

A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report. The study offers the first reliable method for tracing viral evolution back to ...

Building a biofuel-boosting Swiss Army knife

September 21, 2015

Researchers at Michigan State University have built a molecular Swiss Army knife that streamlines the molecular machinery of cyanobacteria, also known as blue-green algae, making biofuels and other green chemical production ...

Flowing electrons help ocean microbes gulp methane

September 18, 2015

Good communication is crucial to any relationship, especially when partners are separated by distance. This also holds true for microbes in the deep sea that need to work together to consume large amounts of methane released ...

Recommended for you

From a very old skeleton, new insights on ancient migrations

October 9, 2015

Three years ago, a group of researchers found a cave in Ethiopia with a secret: it held the 4,500-year-old remains of a man, with his head resting on a rock pillow, his hands folded under his face, and stone flake tools surrounding ...

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.