Researchers characterize potential protein targets for malaria vaccine

October 31, 2008

Researchers from Nijmegen and Leiden have now characterized a large number of parasite proteins that may prove useful in the development of a human malaria vaccine. Details are published October 31st in the open-access journal PLoS Pathogens.

Every day 2000 children die from malaria in Africa alone. The infection is transmitted from human to human by biting mosquitoes. Despite many years of effort, a vaccine is still not available to fight the deadly disease.

Once injected by a mosquito, parasites migrate to the liver where they mature and then their sporozoites (infective cells) are released into the blood, causing disease and fatal complications. A promising method for vaccination is to sufficiently weaken these parasites such that they invade liver cells and stimulate an immune response, but don't develop further. This can be achieved by genetically inactivating individual parasite genes that are active during the parasite's growth in the liver. The researchers achieved this by modifying the proteins essential for sporozoite development, which their study identified.

Collaborators had previously shown how to successfully vaccinate mice using a rodent malaria which had one of these liver stage genes removed, specifically p36p. In a related article, published October 28th in PLoS ONE, this collaborating group shows the first transition of such a vaccination from the rodent system to humans, by inactivating the equivalent gene (p52) in the major human malaria parasite, P. falciparum. Similar to the results with the rodent parasite, these human parasites are unable to develop in liver cells.

This is the first time that genetic modification of a human parasite results in its growth arrest in a liver cell, opening up promising possibilities for its use as a human vaccine. These studies show how results obtained in rodent models of malaria can be pipelined to form the basis for clinical development of anti-malaria vaccines in humans.

Citation: Lasonder E, Janse CJ, van Gemert G-J, Mair GR, Vermunt AMW, et al. (2008) Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity. PLoS Pathog 4(10): e1000195. doi:10.1371/journal.ppat.1000195
www.plospathogens.org/doi/ppat.1000195

Source: Public Library of Science

Explore further: River prawns stop disease spread in West Africa

Related Stories

River prawns stop disease spread in West Africa

August 25, 2015

The Diama Dam that spans between Senegal and Mauritania in West Africa was intended to improve crop irrigation when it was built in 1986. But while preventing saltwater intrusion, the dam also altered the region's ecology, ...

Newly identified tadpole disease found across the globe

August 10, 2015

Scientists have found that a newly identified and highly infectious tadpole disease is found in a diverse range of frog populations across the world. The discovery sheds new light on some of the threats facing fragile frog ...

Parasite growth hormone pushes human cells to liver cancer

October 9, 2009

Scientists have found that the human liver fluke (Opisthorchis viverrini) contributes to the development of bile duct (liver) cancer by secreting granulin, a growth hormone that is known to cause uncontrolled growth of cells. ...

Old stain in a new combination

May 20, 2009

New combinations of agents based on the oldest synthetic malaria drug, the methylene blue stain, can curb the spread of malaria parasites and make a significant contribution to the long-term eradication called for by the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.