Bee swarms follow high-speed 'streaker' bees to find a new nest

October 3, 2008

It's one of the hallmarks of spring: a swarm of bees on the move. But how a swarm locates a new nest site when less than 5% of the community know the way remains a mystery. Curious to find out how swarms cooperate and are guided to their new homes, Tom Seeley, a neurobiologist from Cornell University, and engineers Kevin Schultz and Kevin Passino from The Ohio State University teamed up to find out how swarms are guided to their new home and publish their findings on October 3rd 2008 in The Journal of Experimental Biology.

According to Schultz there are two theories on how swarms find the way. In the 'subtle guide' theory, a small number of scout bees, which had been involved in selecting the new nest site, guide the swarm by flying unobtrusively in its midst; near neighbours adjust their flight path to avoid colliding with the guides while more distant insects align themselves to the guides' general direction. In the 'streaker bee' hypothesis, bees follow a few conspicuous guides that fly through the top half of the swarm at high speed.

Schultz explains that Seeley already had still photographs of the streaks left by high-speed bees flying through a swarm's upper layers, but what Seeley needed was movie footage of a swarm on the move to see if the swarm was following high-velocity streakers or being unobtrusively directed by guides. Passino and Seeley decided to film swarming bees with high-definition movie cameras to find out how they were directed to their final destination.

But filming diffuse swarms spread along a 12·m length with each individual on her own apparently random course is easier said than done. For a start you have to locate your camera somewhere along the swarm's flight path, which is impossible to predict in most environments. The team overcame this problem by relocating to Appledore Island, which has virtually no high vegetation for swarms to settle on. By transporting large colonies of bees, complete with queen, to the island, the team could get the insects to swarm from a stake to the only available nesting site; a comfortable nesting box. Situating the camera on the most direct route between the two sites, the team successfully filmed several swarms' chaotic progress at high resolution.

Back in Passino's Ohio lab, Schultz began the painstaking task of analysing over 3500 frames from a swarm fly-by to build up a picture of the insects' flight directions and vertical position. After months of bee-clicking, Schultz was able to find patterns in the insects' progress. For example, bees in the top of the swarm tended to fly faster and generally aimed towards the nest, with bees concentrated in the middle third of the top layer showing the strongest preference to head towards the nest.

Schultz also admits that he was surprised at how random the bees' trajectories were in the bottom half of the swarm, 'they were going in every direction,' he says, but the bees that were flying towards the new nest generally flew faster than bees that were heading in other directions; they appeared to latch onto the high-speed streakers. All of which suggests that the swarm was following high-speed streaker bees to their new location.

Citation: Schultz, K. M., Passino, K. M. and Seeley, T. D. (2008). The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? J. Exp. Biol. 211, 3287-3295. (jeb.biologists.org)

Source: The Company of Biologists

Explore further: Artificially evolved robots that efficiently self-organize tasks

Related Stories

Honey bees study finds that insects have personality too

March 8, 2012

A new study in Science suggests that thrill-seeking is not limited to humans and other vertebrates. Some honey bees, too, are more likely than others to seek adventure. The brains of these novelty-seeking bees exhibit distinct ...

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

How wind sculpted Earth's largest dust deposit

September 1, 2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.