Bee swarms follow high-speed 'streaker' bees to find a new nest

October 3, 2008

It's one of the hallmarks of spring: a swarm of bees on the move. But how a swarm locates a new nest site when less than 5% of the community know the way remains a mystery. Curious to find out how swarms cooperate and are guided to their new homes, Tom Seeley, a neurobiologist from Cornell University, and engineers Kevin Schultz and Kevin Passino from The Ohio State University teamed up to find out how swarms are guided to their new home and publish their findings on October 3rd 2008 in The Journal of Experimental Biology.

According to Schultz there are two theories on how swarms find the way. In the 'subtle guide' theory, a small number of scout bees, which had been involved in selecting the new nest site, guide the swarm by flying unobtrusively in its midst; near neighbours adjust their flight path to avoid colliding with the guides while more distant insects align themselves to the guides' general direction. In the 'streaker bee' hypothesis, bees follow a few conspicuous guides that fly through the top half of the swarm at high speed.

Schultz explains that Seeley already had still photographs of the streaks left by high-speed bees flying through a swarm's upper layers, but what Seeley needed was movie footage of a swarm on the move to see if the swarm was following high-velocity streakers or being unobtrusively directed by guides. Passino and Seeley decided to film swarming bees with high-definition movie cameras to find out how they were directed to their final destination.

But filming diffuse swarms spread along a 12·m length with each individual on her own apparently random course is easier said than done. For a start you have to locate your camera somewhere along the swarm's flight path, which is impossible to predict in most environments. The team overcame this problem by relocating to Appledore Island, which has virtually no high vegetation for swarms to settle on. By transporting large colonies of bees, complete with queen, to the island, the team could get the insects to swarm from a stake to the only available nesting site; a comfortable nesting box. Situating the camera on the most direct route between the two sites, the team successfully filmed several swarms' chaotic progress at high resolution.

Back in Passino's Ohio lab, Schultz began the painstaking task of analysing over 3500 frames from a swarm fly-by to build up a picture of the insects' flight directions and vertical position. After months of bee-clicking, Schultz was able to find patterns in the insects' progress. For example, bees in the top of the swarm tended to fly faster and generally aimed towards the nest, with bees concentrated in the middle third of the top layer showing the strongest preference to head towards the nest.

Schultz also admits that he was surprised at how random the bees' trajectories were in the bottom half of the swarm, 'they were going in every direction,' he says, but the bees that were flying towards the new nest generally flew faster than bees that were heading in other directions; they appeared to latch onto the high-speed streakers. All of which suggests that the swarm was following high-speed streaker bees to their new location.

Citation: Schultz, K. M., Passino, K. M. and Seeley, T. D. (2008). The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? J. Exp. Biol. 211, 3287-3295. (jeb.biologists.org)

Source: The Company of Biologists

Explore further: Plants that interbreed usually create a hybrid, but sometimes a more dominant plant takes over

Related Stories

Thai farmers launch (bee) sting operation to stop elephants

August 25, 2016

To stop wild elephants from rampaging through their produce, farmers in Thailand put up electric fences, set off firecrackers and even switched their crops from pineapples to pumpkins, which the pachyderms don't relish much. ...

Self-organizing smart materials that mimic swarm behavior

July 22, 2016

A new study by an international team of researchers, affiliated with Ulsan National Institute of Science and Technology (UNIST), Korea, has announced that they have succeeded in demonstarting control over the interactions ...

Reconfiguring active particles into dynamic patterns

July 11, 2016

From swarming bees to clustering bacteria colonies, nature stuns with its ability to self organize and perform collective, dynamic behaviors. Now researchers have found a way to mimic these behaviors in active materials on ...

Recommended for you

Fermi finds record-breaking binary in galaxy next door

September 29, 2016

Using data from NASA's Fermi Gamma-ray Space Telescope and other facilities, an international team of scientists has found the first gamma-ray binary in another galaxy and the most luminous one ever seen. The dual-star system, ...

Game theory research reveals fragility of common resources

September 29, 2016

New research in game theory shows that people are naturally predisposed to over-use "common-pool resources" such as transportation systems and fisheries even if it risks failure of the system, to the detriment of society ...

Scientists: World likely won't avoid dangerous warming mark

September 29, 2016

A team of top scientists is telling world leaders to stop congratulating themselves on the Paris agreement to fight climate change because if more isn't done, global temperatures will likely hit dangerous warming levels in ...

Sugar gives bees a happy buzz, study finds

September 29, 2016

An unexpected sugary snack can give bees a little buzz and appears to lift their mood, even making them optimistic, according to research Thursday that suggests pollinators have feelings, too.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.