Arctic soil reveals climate change clues

October 8, 2008

Frozen arctic soil contains nearly twice the greenhouse-gas-producing organic material as was previously estimated, according to recently published research by University of Alaska Fairbanks scientists.

School of Natural Resources & Agricultural Sciences professor Chien-Lu Ping published his latest findings in the Nature Geoscience and Scientific American Web sites. Wielding jackhammers, Ping and a team of scientists dug down more than one meter into the permafrost to take soil samples from more than 100 sites throughout Alaska. Previous research had sampled to about 40 centimeters deep.

After analyzing the samples, the research team discovered a previously undocumented layer of organic matter on top of and in the upper part of permafrost, ranging from 60 to 120 centimeters deep. This deep layer of organic matter first accumulates on the tundra surface and is buried during the churning freeze and thaw cycles that characterize the turbulent arctic landscape.

The resulting patterned ground plays a key role in the dynamics of carbon storage and release, Ping found. When temperatures warm and the arctic soil churns, less carbon from the surface gets to the deeper part of the soil. The carbon already stored in the deeper part of the soil is released into the atmosphere as carbon dioxide, methane and other gases.

Ping predicted that a two- to three-degree rise in air temperatures could cause the arctic tundra to switch from a carbon sink--an area that absorbs more carbon dioxide than it produces--to a carbon source--an area that produces more carbon dioxide than it absorbs. The more organic material stored in the tundra, the greater the potential effect of future releases, Ping stated.

"The distribution of the Arctic carbon pool with regard to the surface, active layer and permafrost has not been evaluated before, but is very relevant in assessing changes that will occur across the Arctic system," Ping wrote in his study. "Where soil organic carbon is located in the soil profile is especially relevant and useful to climate warming assessments that need to evaluate effects on separate soil processes that vary with temperature and depth throughout the whole annual cycle of seasons."

Source: University of Alaska Fairbanks

Explore further: Ancient fossil forest unearthed in Arctic Norway

Related Stories

Ancient fossil forest unearthed in Arctic Norway

November 19, 2015

UK researchers have unearthed ancient fossil forests, thought to be partly responsible for one of the most dramatic shifts in the Earth's climate in the past 400 million years.

Permafrost: hiding a climate time bomb?

November 20, 2015

On the front line of climate change in the Canadian Arctic, scientists hunt for clues to a potentially catastrophic global warming trend: melting permafrost.

Seven case studies in carbon and climate

November 13, 2015

Every part of the mosaic of Earth's surface—ocean and land, Arctic and tropics, forest and grassland—absorbs and releases carbon in a different way. Wild-card events such as massive wildfires and drought complicate the ...

Research links tundra fires, thawing permafrost

November 10, 2015

Wildfires on Arctic tundra can contribute to widespread permafrost thaw much like blazes in forested areas, according to a study published in the most recent issue of the online journal Scientific Reports.

Recommended for you

Can Paris pledges avert severe climate change?

November 26, 2015

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.