Arctic soil reveals climate change clues

Oct 08, 2008

Frozen arctic soil contains nearly twice the greenhouse-gas-producing organic material as was previously estimated, according to recently published research by University of Alaska Fairbanks scientists.

School of Natural Resources & Agricultural Sciences professor Chien-Lu Ping published his latest findings in the Nature Geoscience and Scientific American Web sites. Wielding jackhammers, Ping and a team of scientists dug down more than one meter into the permafrost to take soil samples from more than 100 sites throughout Alaska. Previous research had sampled to about 40 centimeters deep.

After analyzing the samples, the research team discovered a previously undocumented layer of organic matter on top of and in the upper part of permafrost, ranging from 60 to 120 centimeters deep. This deep layer of organic matter first accumulates on the tundra surface and is buried during the churning freeze and thaw cycles that characterize the turbulent arctic landscape.

The resulting patterned ground plays a key role in the dynamics of carbon storage and release, Ping found. When temperatures warm and the arctic soil churns, less carbon from the surface gets to the deeper part of the soil. The carbon already stored in the deeper part of the soil is released into the atmosphere as carbon dioxide, methane and other gases.

Ping predicted that a two- to three-degree rise in air temperatures could cause the arctic tundra to switch from a carbon sink--an area that absorbs more carbon dioxide than it produces--to a carbon source--an area that produces more carbon dioxide than it absorbs. The more organic material stored in the tundra, the greater the potential effect of future releases, Ping stated.

"The distribution of the Arctic carbon pool with regard to the surface, active layer and permafrost has not been evaluated before, but is very relevant in assessing changes that will occur across the Arctic system," Ping wrote in his study. "Where soil organic carbon is located in the soil profile is especially relevant and useful to climate warming assessments that need to evaluate effects on separate soil processes that vary with temperature and depth throughout the whole annual cycle of seasons."

Source: University of Alaska Fairbanks

Explore further: Invisible helpers of the sea: Marine bacteria boost growth of tiny ocean algae

Related Stories

Researchers clarify impact of permafrost thaw

May 12, 2015

As the Earth's climate continues to warm, researchers are working to understand how human-driven emissions of carbon dioxide will affect the release of naturally occurring greenhouse gases from arctic permafrost. ...

Thawing permafrost feeds climate change

Apr 23, 2015

Carbon, held in frozen permafrost soils for tens of thousands of years, is being released as Arctic regions of the Earth warm and is further fueling global climate change, according to a Florida State University ...

Recommended for you

The Arctic: Interglacial period with a break

2 hours ago

Scientists at the Goethe University Frankfurt and at the Senckenberg Biodiversity and Climate Research Centre working together with their Canadian counterparts, have reconstructed the climatic development ...

Building collapse during earthquake aftershocks

3 hours ago

Earthquakes kill, but their aftershocks can cause the rapid collapse of buildings left standing in the aftermath of the initial quake. Research published in the International Journal of Reliability and Sa ...

Large igneous provinces associated with mid-ocean ridges

5 hours ago

Lip reading normally involves deciphering speech patterns, movements, gestures and expressions just by watching a person speak. Planet Earth has LIPS, too - they are an acronym for large igneous provinces, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.