3D nanotube assembly technique for nanoscale electronics

October 22, 2008 By Lisa Zyga feature
A cross-sectional view of the assembled carbon nanotubes and gold top layer in yellow (false color), taken by a scanning electron microscope. Image credit : Evin Gultepe, et al.

(PhysOrg.com) -- For the past several years, researchers have been trying to take advantage of carbon nanotubes’ good electrical properties for future nanoscale electronics applications. One of the biggest challenges in this area is finding ways to arrange and assemble the nanotubes into 3D configurations for carrying current in nanoscale devices.

Most recently, a team of physicists and engineers from the Electronic Materials Research Institute at Northeastern University in Boston, Massachusetts, has demonstrated a technique for assembling nanotubes using an applied electric field. Using this method, the researchers could assemble single-walled carbon nanotubes into 3D structures by coaxing the nanotubes into deep nanoholes in a porous alumina template. An average of one nanotube per hole was vertically assembled, and, by sweeping the 0.32cm2 area, more than one million holes were filled with nanotubes.

“The greatest significance of this technique is that it provides the potential to manufacture, at a high rate and on a large scale, three-dimensional single-wall carbon nanotube electrical interconnects, without the need for high-temperature synthesis,” Srinivas Sridhar, Director of the Electronic Materials Research Institute, told PhysOrg.com.

To achieve this nanotube assembly, the researchers attached a positive electrode to the bottom of a silicon template, which the aluminum template went on top of. Then they manually swept a negative electrode over assembly sites, pushing negatively charged nanotubes into the holes in the aluminum template. This process of using an electric field to move charged objects is called electrophoresis. Similarly, a process called dielectrophoresis, in which a non-uniform electric field moves charged or uncharged objects, also assisted in orienting the nanotubes toward the holes.

After assembling the nanotubes, the researchers sputtered a 15-nm-thick gold layer on top of the alumina template, touching the tops of the nanotubes. This layer completed an electrical connection between all the nanotubes reaching the surface of the template, with electric current traveling through the nanotubes between the gold and silicon layers. On control samples without nanotubes, no current was observed between the two layers, confirming that the nanotubes had carried the current.

By not requiring high temperatures, and providing the ability to cover centimeter-scale areas in a short time, the new assembly technique has useful advantages over other nanotube assembly techniques. The method could also integrate well into existing silicon platforms, which could be used in microelectronics, field emission displays, electronic memory devices and solar cells.

“The next step in nanoscale electronics is to integrate the 3D carbon nanotubes architectures with current CMOS technology and create hybrid systems,” Sridhar said. “The holy grail of nanoscale electronics is to completely replace CMOS technology by monolithic carbon nanotubes devices.

“Scaling down the nominal feature size makes more space available on a chip to hold more transistors and other types of devices,” he added. “Shrinking process geometries means better performance and lower costs.”

More information: Electronic Materials Research Institute

Citation: Gultepe, Evin; Nagesha, Dattatri; Casse, Bernard Didier Frederic; Selvarasah, Selvapraba; Busnaina, Ahmed; and Sridhar, Srinivas. “Large scale 3D vertical assembly of single-wall carbon nanotubes at ambient temperatures.” Nanotechnology 19 (2008) 455309 (5pp). Contact: s.sridhar(at)neu.edu

Copyright 2008 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Researchers grind nanotubes to get nanoribbons

Related Stories

Making fuels and chemicals from bio-inspired sources

February 10, 2015

Living cells are a hive of activity, full of tiny structures making proteins, breaking down junk, and creating energy. All of this happens through a series of chemical reactions made possible largely because of the humble ...

Chemists seek state-of-the-art lithium-sulfur batteries

July 1, 2014

When can we expect to drive the length of Germany in an electric car without having to top up the battery? Chemists at the NIM Cluster at LMU and at the University of Waterloo in Ontario, Canada, have now synthesized a new ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.