Team finds genetic link between immune and nerve systems

September 19, 2008

DURHAM, N.C. —Duke University Medical Center researchers have discovered genetic links between the nervous system and the immune system in a well-studied worm, and the findings could illuminate new approaches to human therapies.

For some time, researchers have theorized a direct link between the nervous and immune systems, such as stress messages that override the protective effects of antibodies, but the exact connection was unknown.

"This is the first time that a genetic approach has been used to demonstrate that specific neurons in the nervous system are capable of regulating immune response in distant cells," said Alejandro Aballay Ph.D., Assistant Professor in the Duke Department of Molecular Genetics and Microbiology.

They studied a neural circuit in the roundworm Caenorhabditis elegans.

"The study of neural-immune communications is quite challenging in mammals," Aballay said. "The simple, well-characterized nervous system of C. elegans and its recently discovered innate immune system make it a prime system for research. We can study the mechanisms and biological meaning of the cross-talk between the immune and nervous systems, and our studies should set the stage for a new field of research."

Pamela Marino, Ph.D., who oversees molecular immunology grants at the National Institute of General Medical Sciences of the National Institutes of Health, said, "Dr. Aballay has made use of the well defined genetics of the roundworm to reveal evidence of cross talk between the nervous system and the innate immune system. Beyond neuronal regulation of immunity, this work opens the door to understanding how neurons may affect other non-neural processes, such as fat storage and longevity."

The study, published in the Sept. 18 issue of Science, was funded by grants from the Whitehead Scholars Program and the National Institutes of Health.

The research team used two approaches to show the genetic connection between nerve cells and immune-response cells.

They found that NPR-1, a worm cell receptor linked to proteins that are similar to mammalian neuropeptide Y, functions to suppress the activity of specific neurons that block immune responses. They then studied worms with a mutated npr-1 gene that produced an NPR-1 receptor that didn't function. The scientists showed that when the flawed receptor didn't work, the neurons were able to block the immune response and the worms became more susceptible to infection by pathogens.

The three different neurons found to express the receptor NPR-1 are exposed to the body fluids of the roundworm – the equivalent of the bloodstream in humans. Signals from the neurons can travel and communicate with other tissues, such as intestinal tissue, which often directly contacts microbial pathogens, Aballay said.

They also performed a full-genome analysis on roundworms that had altered nerve-cell function because of a mutation in the npr-1 gene. This analysis showed the animals had poorly regulated expression of genes that encode markers of innate immune responses. In particular, they found that most of the immune marker genes were regulated by a P38 MAPK signaling pathway, which is required for immunity in animals from worms to humans.

"The complexity of the network involved in the communication between the neural system and the immune system expands the number of possible targets for therapeutic interventions," Aballay said. "The nervous system alone provides a large number of targets for novel approaches to boost innate immunity against different pathogens."

Source: Duke University Medical Center

Explore further: New antibody insecticide targets malaria mosquito

Related Stories

New antibody insecticide targets malaria mosquito

May 20, 2015

Malaria is a cruel and disabling disease that targets victims of all ages. Even now, it is estimated to kill one child every minute. Recent progress in halting the spread of the disease has hinged on the use of insecticide-treated ...

Research shows blood cells generate neurons in crayfish

April 9, 2015

A new study by Barbara Beltz, the Allene Lummis Russell Professor of Neuroscience at Wellesley College, and Irene Söderhäll of Uppsala University, Sweden, published in the August 11 issue of the journal Developmental Cell, ...

Microbes help produce serotonin in gut

April 9, 2015

Although serotonin is well known as a brain neurotransmitter, it is estimated that 90 percent of the body's serotonin is made in the digestive tract. In fact, altered levels of this peripheral serotonin have been linked to ...

Blood cells are new, unexpected source of neurons in crayfish

August 11, 2014

Researchers have strived for years to determine how neurons are produced and integrated into the brain throughout adult life. In an intriguing twist, scientists reporting in the August 11 issue of the Cell Press journal Developmental ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.