Stem cell regeneration repairs congenital heart defect

September 11, 2008

Mayo Clinic investigators have demonstrated that stem cells can be used to regenerate heart tissue to treat dilated cardiomyopathy, a congenital defect. Publication of the discovery was expedited by the editors of Stem Cells and appeared online in the "express" section of the journal's Web site at>.

The study expands on the use of embryonic stem cells to regenerate tissue and repair damage after heart attacks and demonstrates that stem cells also can repair the inherited causes of heart failure.

"We've shown in this transgenic animal model that embryonic stem cells may offer an option in repairing genetic heart problems," says Satsuki Yamada, M.D., Ph.D., cardiovascular researcher and first author of the study. "Close evaluation of genetic variations among individuals to identify optimal disease targets and customize stem cells for therapy opens a new era of personalized regenerative medicine," adds Andre Terzic, M.D., Ph.D., Mayo Clinic cardiologist and senior author and principal investigator.

The team reproduced prominent features of human malignant heart failure in a series of genetically altered mice. Specifically, the "knockout" of a critical heart-protective protein known as the KATP channel compromised heart contractions and caused ventricular dilation or heart enlargement. The condition, including poor survival, is typical of patients with heritable dilated cardiomyopathy.

Researchers transplanted 200,000 embryonic stem cells into the wall of the left ventricle of the knockout mice. After one month the treatment improved heart performance, synchronized electrical impulses and stopped heart deterioration, ultimately saving the animal's life. Stem cells had grafted into the heart and formed new cardiac tissue. Additionally, the stem cell transplantation restarted cell cycle activity and halved the fibrosis that had been developing after the initial damage. Stem cell therapy also increased stamina and removed fluid buildup in the body, so characteristic in heart failure.

The researchers say their findings show that stem cells can achieve functional repair in non-ischemic (cases other than blood-flow blockages) genetic cardiomyopathy. Further testing is underway.

Source: Mayo Clinic

Explore further: Human gene prevents regeneration in zebrafish

Related Stories

Human gene prevents regeneration in zebrafish

November 18, 2015

Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body's own anti-cancer security ...

A Prkci gene keeps stem cells in check

October 31, 2015

When it comes to stem cells, too much of a good thing isn't wonderful: producing too many new stem cells may lead to cancer; producing too few inhibits the repair and maintenance of the body.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.