Quantum leap in hi-tech performance

September 25, 2008

For years, physicists have been heralding the revolutionary potential of using quantum mechanics to build a new generation of supercomputers, unbreakable codes, and ultra-fast and secure communication networks.

The brave new world of quantum technology may be a big step closer to reality thanks to a team of University of Calgary researchers that has come up with a unique new way of testing quantum devices to determine their function and accuracy. Their breakthrough is reported in today's edition of Science Express, the advanced online publication of the prestigious journal Science.

"Building quantum machines is difficult because they are very complex, therefore the testing you need to do is also very complex," said Barry Sanders, director of the U of C's Institute for Quantum Information Science and a co-author of the paper. "We broke a bunch of taboos with this work because we have come up with an entirely new way of testing that is relatively simple and doesn't require a lot of large and expensive diagnostic equipment."

Similar to any electronic or mechanical device, building a quantum machine requires a thorough understanding of how each part operates and interacts with other parts if the finished product is going to work properly. In the quantum realm, scientists have been struggling to find ways to accurately determine the properties of individual components as they work towards creating useful quantum systems. The U of C team has come up with a highly-accurate method for analyzing quantum optical processes using standard optical techniques involving lasers and lenses.

"It is a completely different approach to quantum characterization than we have seen before," said post-doctoral researcher Mirko Lobino, the paper's lead author. "This process will be able to tell us if something is working correctly and will hopefully lead the way towards a quantum certification process as we move from quantum science to making quantum technology."

The development of quantum computers is considered the next major advancement in computer processing and memory power but is still in its infancy. Unlike regular silicon-based computers that transmit information in binary units (bits) using 1 and 0, quantum computers use the subatomic physical processes of quantum mechanics to transmit information in quantum bits (qubits) that can exist in more than two states. Computers based on quantum physics are predicted to be far more powerful than computers based on classical physics and could break many of the most advanced codes currently used to secure digital information. Quantum physics is also being used to try and create new, unbreakable encryption systems.

The same research group at the U of C, led by physics professor Alexander Lvovsky, made headlines earlier this year when they were one of two teams to independently prove it's possible to store a special kind of light, called a "squeezed vacuum." That work is considered the initial step towards creating memory systems for quantum computing.

Source: University of Calgary

Explore further: Researchers develop simple way to ward off Trojan attacks on quantum cryptographic systems

Related Stories

One step closer to a new kind of computer

September 16, 2015

An international group of physicists, including Aleksandr Golubov, head of the MIPT Laboratory of Topological Quantum Phenomena in Superconductor Systems, recently presented results of experiments testing a new phenomenon ...

A quantum lab for everyone

September 16, 2015

A virtual laboratory allows, for the first time, to actively engage with topical quantum physics. The novel learning environment was developed at the Faculty of Physics at the University of Vienna in collaboration with university ...

Quantum computing will bring immense processing possibilities

September 2, 2015

The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 26, 2008
"Building quantum machines is difficult because they are very complex, therefore the testing you need to do is also very complex," said Barry Sanders

Wow, I never knew he could play ball AND solve quantum equations....It just goes to show you...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.