A new 'Pyrex' nanoparticle

September 7, 2008
Borosilicate glass nanoparticles. Credit: Martin Gijs, EPFL

Researchers in Switzerland have developed a new method to fabricate borosilicate glass nanoparticles. Used in microfluidic systems, these "Pyrex"-like nanoparticles are more stable when subjected to temperature fluctuations and harsh chemical environments than currently used nanoparticles made of polymers or silica glass. Their introduction could extend the range of potential nanoparticle applications in biomedical, optical and electronic fields.

Thanks to their large surface-to-volume ratio, nanoparticles have generated wide interest as potential transporters of antibodies, drugs, or chemicals for use in diagnostic tests, targeted drug therapy, or for catalyzing chemical reactions.

Unfortunately, these applications are limited because nanoparticles disintegrate or bunch together when exposed to elevated temperatures, certain chemicals, or even de-ionized water. Using borosilicate glass (the original "Pyrex") instead of silica glass or polymers would overcome these limitations, but fabrication has been impossible to date due to the instability of the boron oxide precursor materials.

In this week's advance online issue of Nature Nanotechnology, a group of EPFL researchers, led by Professor Martin Gijs, reports on a new procedure to fabricate and characterize borosilicate glass nanoparticles. In addition to biomedical applications, the new nanoparticles could also have applications in the production of photonic bandgap devices with high optical contrast, contrast agents for ultrasonic microscopy or chemical filtration membranes.

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Can we use eDNA as an 'environmental magnifying-glass'?

Related Stories

Can we use eDNA as an 'environmental magnifying-glass'?

November 3, 2015

An innovative idea submitted by Bangor University has been selected as one of eight projects selected within four "idea" areas to be funded by the Natural Environment Research Council's (NERC) new "Highlight Topic" research ...

Biomimetic dental prosthesis

September 27, 2015

There are few tougher, more durable structures in nature than teeth or seashells. The secret of these materials lies in their unique fine structure: they are composed of different layers in which numerous micro-platelets ...

Ancient Roman glass inspires modern science

November 20, 2013

(Phys.org) —A 1700-year-old Roman glass cup is inspiring University of Adelaide researchers in their search for new ways to exploit nanoparticles and their interactions with light.

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.