Noble metal nanoparticles deposit on the mycelium of growing fungi--an approach to new catalytic systems?

September 18, 2008

(PhysOrg.com) -- When fungi, such as penicillium, grow, they form a thread-like network, the mycelium. If the fungus is grown in a medium containing nanoscopic particles of a noble metal, the resulting mycelium is coated with the nanoparticles. As researchers from the Technical University in Dresden and the Max Planck Institute for the Chemical Physics of Solid Materials in Dresden (Germany) report in the journal Angewandte Chemie, such hybrids could be an interesting new approach for the production of catalytic systems.

The team, led by Alexander Eychmüller and Karl-Heinz Pée, cultivated various types of fungus in media with finely divided (colloidal) nanoparticles of noble metals. In the presence of the tiny gold, platinum, or palladium particles, the fungi grew with no appreciable impairment.

Silver particles, which are toxic to microorganisms, were also tolerated by one variety of fungus. The nanoparticles are deposited on the surface of the growing mycelium—without any special modification beforehand. Thus hybrid systems made of fungi and noble metals are formed: tubular hyphae covered in multiple layers of individual nanoparticles.

The optical properties of nanoscopic particles depend on their size. The researchers determined that the optical properties of their deposited particles differ only slightly from those of the nanoparticles in solution. Fungal threads with a 0.2µm gold covering thus appear reddish brown, like a solution of such gold nanoparticles. This is evidence that the nanoparticles have not aggregated to form larger units.

Because the particles remain separate, the mycelium-bound noble metal nanoparticles should also retain their special catalytic activities. The researchers were thus able to determine that a platinum–fungus hybrid catalyzes the redox reaction of hexacyanoferrate and thiosulfate in aqueous solution. The “enobled” fungal mycelium offers a system easy to separate from the solution after the reaction and a highly specific surface—important for a catalyst.

Citation: Alexander Eychmüller, Fungal Templates for Noble-Metal Nanoparticles and Their Application in Catalysis, Angewandte Chemie International Edition 2008, 47, No. 41, 7876–7879, doi: 10.1002/anie.200801802

Provided by Wiley

Explore further: Colloidosomes made of gold nanoparticles offer strong plasmonic coupling

Related Stories

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Dr_Righteous
not rated yet Sep 18, 2008
Hey! I might make a profit now from my Tinea Pedis infection.
wsbriggs
not rated yet Sep 18, 2008
Hey! I might make a profit now from my Tinea Pedis infection.


Only if it's gold coated ;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.