Researchers identify natural tumor suppressor

Sep 09, 2008

Researchers from the University of Pennsylvania School of Medicine have identified a key step in the formation – and suppression – of esophageal cancers and perhaps carcinomas of the breast, head, and neck. By studying human tissue samples, they found that Fbx4, a naturally occurring enzyme, plays a key role in stopping production of another protein called Cyclin D1, which is thought to contribute to the early stages of cancer development.

When mutations block production of Fbx4, Cyclin D1 is not broken down, and subsequently contributes to cancer's advance. Fbx4 acts like a bouncer, stopping trouble before it starts by breaking down Cyclin D1 before it can affect the body.

"Cyclin D1 was identified nearly 20 years ago and after that, it became apparent that it was overexpressed in a high percentage of tumors," says J. Alan Diehl, PhD, Associate Professor of Cancer Biology at the University of Pennsylvania's Abramson Family Cancer Research Institute. "But its expression didn't correlate to mutations within Cyclin D1, so we were looking for a protein that regulates accumulation. That's Fbx4."

For this study, researchers screened 116 esophageal tumors and found 16 mutations. Their findings were published in a recent issue of Cancer Cell.

The actual mutations researchers found are located within a highly conserved region of Fbx4 that functions like an on switch. Mutations within that switch region inhibit activation of Fbx4, which means it can't trigger destruction of Cyclin D1.

The results are important in that they show how Cyclin D1 becomes so prevalent in tumors. Before, it was thought that Cyclin D1 was present because of a mutation somewhere in the DNA of a cell. Instead, this study shows that Cyclin D1 naturally occurs, but our bodies have created a natural defense mechanism that breaks it down before cancer develops.

"When Fbx4 is inactivated, it permits the accumulation of its target, CyclinD1," says Diehl.

While it remains important to define the cause of the initial mutations, this study provides researchers with a better understanding of the early stages of cancer which is crucial to finding a way to reverse the process.

Source: University of Pennsylvania

Explore further: Protein's impact on colorectal cancer is dappled

Related Stories

A novel microscope for nanosystems

17 minutes ago

Nanomaterials play an essential role in many areas of daily life. There is thus a large interest to gain detailed knowledge about their optical and electronic properties. Conventional microscopes get beyond ...

Understanding subduction zone earthquakes

21 minutes ago

The 26 December 2004 Mw ~9.2 Indian Ocean earthquake (also known as the Sumatra-Andaman or Aceh-Andaman earthquake), which generated massive, destructive tsunamis, especially along the Aceh coast of northern ...

New lenses grown layer-by-layer increase X-ray power

22 minutes ago

When you're working with the brightest x-ray light source in the world, it's crucial that you make use of as many of the photons produced as possible. That's why physicists Hanfei Yan and Nathalie Bouet at ...

Soggy invaders from space

1 minute ago

Is there a water shortage out there? It's an important question if you're looking for biology beyond Earth. Experts will tell you that, while other fluids may be able to incubate life (ammonia and liquefied ...

Researchers detect spin precession in silicon nanowires

10 minutes ago

Scientists at the U.S. Naval Research Laboratory (NRL) have reported the first observation of spin precession of spin currents flowing in a silicon nanowire (NW) transport channel, and determined spin lifetimes ...

Recommended for you

Protein's impact on colorectal cancer is dappled

6 hours ago

Researchers at University of California, San Diego School of Medicine have discovered a cell signaling pathway that appears to exert some control over initiation and progression of colorectal cancer, the ...

Colon cancer: Taking a step back to move forward

15 hours ago

Recent Weizmann Institute studies are revealing a complex picture of cancer progression in which certain genes that drive tumor growth in the earlier stages get suppressed in later stages - taking a step ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.