Mars magnetic field mystery explained

September 25, 2008
Mars

(PhysOrg.com) -- So much attention has been paid to the similarities and differences between Earth and Mars that we often look to the ancient red planet for signposts in our own planet's future. A U of T physicist, whose work is published this week in the prestigious international journal Science, may have explained some key differences in the magnetic fields of the two planets.

On Mars, the magnetic fields frozen into surface rocks over four-billion-years-old provide a glimpse of an ancient era when the planet possessed a global magnetic field generated by motions in its fluid core.

"If Mars' past magnetic field generation process -- called a dynamo -- worked like Earth's does today, then we would expect similar magnetic field strengths in both the northern and southern hemispheres," said U of T Professor Sabine Stanley, lead author of the study.

"But Mars' crustal magnetic fields are strongest only in the southern hemisphere," she said.

This asymmetry in magnetic field strengths is correlated with another odd ancient crustal feature on Mars. The northern hemisphere crust is thinner and lower than the southern hemisphere crust. Possible explanations for this dichotomy include a giant low-angle impact in the northern hemisphere, or a large-scale hemispheric circulation pattern in Mars' mantle from which the crust formed. Both of these scenarios have implications for the temperature at the core-mantle boundary of Mars, making the northern boundary warmer than the southern boundary.

Stanley and colleagues from MIT and Brown University wondered if the crustal dichotomy formation process could also explain the hemispheric magnetic intensity differences.To investigate, they created a computer simulation for Mars' past dynamo that takes into account the hemispheric temperature differences imposed by Mars' mantle on the core. In the resulting simulation, strong magnetic fields were only generated in the southern hemisphere.

"It is encouraging when the solution to one problem also solves another problem," said Stanley. Previous hypotheses for the magnetic field asymmetry relied on processes that altered the northern hemisphere crust after Mars' dynamo died. "In our model, the proposed formation mechanism for the crustal dichotomy also explains the strange magnetic fields frozen into the rocks at that time."

The ancient magnetic field pattern also has implications for Mars' ancient atmosphere. It is difficult to explain the rapid loss of Mars' ancient atmosphere if the planet possessed a strong magnetic field at that time.

"Our model of Mars' past dynamo may help since the magnetic field would only be strong in the southern hemisphere. Atmospheric removal could still be efficient in the northern hemisphere," explained Stanley.

Provided by University of Toronto

Explore further: Weather reports on the Sun could lead to safer space travel

Related Stories

Could 'windbots' someday explore the skies of Jupiter?

July 23, 2015

Among designers of robotic probes to explore the planets, there is certainly no shortage of clever ideas. There are concepts for robots that are propelled by waves in the sea. There are ideas for tumbleweed bots driven by ...

Mariner 4 to Mars, 50 years later

July 15, 2015

July 14 marks 50 years of visual reconnaissance of the solar system by NASA's Jet Propulsion Laboratory (JPL), beginning with Mariner 4's flyby of Mars in 1965.

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Keter
3.3 / 5 (6) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.
holmstar
5 / 5 (3) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


The general consensus is that Earth and Mars ARE about the same age...

Ancient is only referring to the time that Mars had a strong magnetic field and a relatively thick atmosphere.

Whereas Earth still currently has both of those, Mars lost them in "ancient" times.
D666
5 / 5 (4) Sep 25, 2008
Why are we apparently assuming that Mars is "ancient" when compared to Earth? Shouldn't they be about the same "age"? I think this may be a fundamental flaw in the theory.


If you are referring to the use of the word in the first sentence, I think that's just bad reportage. Generally though, Mars' surface is probably considered old in comparison to Earth's, simply because tectonics stopped so long ago.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.