Golden Nanorods for Medical Applications

September 8, 2008
M. Bockstaller and his team have synthesized gold nanorods using an ionic liquid as a solvent. Gold nanorods are interesting starting materials in cancer therapy. (c)Wiley-VCH 2008

( -- Gold nanoparticles are under consideration for a number of biomedical applications, such as tumor treatment. A German-American research team at Carnegie Mellon University in Pittsburgh, Hunter College in New York, and the RWTH Aachen has now developed a new method for the production of nanoscopic gold rods. In contrast to previous methods, they have achieved this without the use of cytotoxic additives. As they report in the journal Angewandte Chemie, the synthesis is not carried out in water, but in an ionic liquid, a “liquid salt”.

Cancer cells are relatively temperature-sensitive. This is exploited in treatments involving overheating of parts of the cancer patient’s body. One highly promising method is photoinduced hyperthermia, in which light energy is converted to heat. Gold nanoparticles absorb light very strongly in the near infrared, a spectral region that is barely absorbed by tissue. The absorbed light energy causes the gold particles to vibrate and is dissipated into the surrounding area as heat. The tiny gold particles can be functionalized so that the specifically bind to tumor cells. Thus, only cells that contain gold particles are killed off.

The problem? Ordinary spherical gold particles do not efficiently convert the light energy into heat; only rod-shaped particles will do. Unfortunately, the additives needed to crystallize the rod-shaped particles from aqueous solutions are cytotoxic.

The team headed by Michael R. Bockstaller is now pursuing a new strategy: instead of aqueous solution, they chose to use an ionic liquid as their medium of crystallization. Ionic liquids are “liquid salts”, organic compounds that exist as oppositely charged ions, but in the liquid state. In this way, the researchers have been able to produce gold nanorods without the use of any cytotoxic additives.

In the first step, seed crystals are produced in the form of tiny spherical gold particles. These crystals are added to a “secondary growth solution” containing monovalent gold ions, silver ions, and the weak reducing agent ascorbic acid. The solvent is an imidazolium-based ionic liquid. In this medium, the crystals don’t continue to grow into spheres; instead they form rods with the round crystallization nuclei as “heads”. The mechanism is presumed to involve the various, energetically inequivalent surfaces of the crystal lattice: the aromatic, nitrogen-containing five-membered rings of the ionic liquid prefer to accumulate at the highly energetic facets of gold surfaces. They thus stabilize crystal shapes that have fewer low-energy facets than the normal spherical equilibrium form. This results in long rods.

Citation: Michael R. Bockstaller, Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods, Angewandte Chemie International Edition 2008, 47, No. 40, doi: 10.1002/anie.200802185

Provided by Wiley

Explore further: Swan River flowing with gold

Related Stories

Swan River flowing with gold

September 22, 2015

Solid gold particles have been discovered in the Swan River, but don't grab your prospecting kit just yet.

Filter helps recover 80% of gold in mobile phone scrap

April 10, 2014

Mobile phone scrap can contain precious metals, such as gold and copper. VTT Technical Research Centre of Finland has developed a biological filter made of mushroom mycelium mats enabling recovery of as much as 80% of the ...

Soft spheres settle in somewhat surprising structure

July 24, 2011

Latex paints and drug suspensions such as insulin or amoxicillin that do not need to be shaken or stirred may be possible thanks to a new understanding of how particles separate in liquids, according to Penn State chemical ...

Plug n' Play protein crystals

August 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the arrangement of atoms ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.