'Chemical equator' discovery will aid pollution mapping

Sep 23, 2008

Scientists at the University of York have discovered a 'Chemical Equator' that divides the polluted air of the Northern Hemisphere from the largely uncontaminated atmosphere of the Southern Hemisphere.

Researchers from the University's Department of Chemistry found evidence for an atmospheric chemical equator around 50 km wide in cloudless skies in the Western Pacific. Their findings show for the first time that the chemical and meteorological boundaries between the two air masses are not necessarily the same.

The discovery will provide important clues to help scientists to model simulations of the movement of pollutants in the atmosphere more accurately, and to assess the impact of pollution on climate. The study is part of the ACTIVE project (Aerosol and Chemical Transport in Tropical Convection) funded by the Natural Environment Research Council.

Previously, scientists believed that the Intertropical Convergence Zone (ITCZ) formed the boundary between the polluted air of the Northern Hemisphere and the cleaner air of the Southern Hemisphere. The ITCZ is a cloudy region circling the globe where the trade winds from each hemisphere meet. It is characterised by rapid vertical uplift and heavy rainfall, and acts as a meteorological barrier to pollutant transport between the hemispheres.

But the new research, to be published in the Journal of Geophysical Research - Atmospheres, found huge differences in air quality on either side of the chemical equator, which was 50 km wide and well to the north of the ITCZ. The study revealed that carbon monoxide, a tracer of combustion, increased from 40 parts per billion to the south, to 160 parts per billion in the north. The difference in pollutant levels was increased by extensive forest fires to the north of the boundary and very clean air south of the chemical equator being pulled north from the Southern Indian Ocean by a land based cyclone in northern Australia.

The scientists discovered evidence of the chemical equator using sensors on a specially equipped aeroplane during a series of flights north of Darwin. At the time, the ITCZ was situated well to the south over central Australia.

Dr Jacqueline Hamilton, of the Department of Chemistry at York, said: "The shallow waters of the Western Pacific, known as the Tropical Warm Pool, have some of highest sea surface temperatures in the world, which result in the region's weather being dominated by storm systems. The position of the chemical equator was to the south of this stormy region during the ACTIVE campaign.

"This means that these powerful storms may act as pumps, lifting highly polluted air from the surface to high in the atmosphere where pollutants will remain longer and may have a global influence. To improve global simulations of pollutant transport, it is vital to know when the chemical and meteorological boundary are in different locations."

Source: University of York

Explore further: Severe ozone depletion avoided

Related Stories

Novel catalyst used to make styrene in one step

May 05, 2015

(Phys.org)—Styrene is an important industrial chemical. It is the precursor to polystyrene which is used in various every day plastic products, like disposable cups, packaging, and insulation. Over 18.5m ...

Recommended for you

Satellites catch the birth of two volcanic islands

9 hours ago

The birth of a volcanic island is a potent and beautiful reminder of our dynamic planet's ability to make new land. Given the destruction we've seen following natural events like earthquakes and tsunamis in t ...

Uncovering diversity in an invisible ocean world

10 hours ago

Plankton are vital to life on Earth—they absorb carbon dioxide, generate nearly half of the oxygen we breathe, break down waste, and are a cornerstone of the marine food chain. Now, new research indicates ...

Evolution of the Antarctic ice sheet

12 hours ago

ULB study sheds a new light on the stability of the Antarctic ice sheet. It shows for the first time that ice rises (pinning points that keep the floating parts of ice sheets in place) are formed during the transition between ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.