Beginning to see the light

Sep 29, 2008
Molecular mechanisms of vision
Molecular mechanisms of vision

(PhysOrg.com) -- Scientists have detailed the active form of a protein which they hope will enhance our understanding of the molecular mechanisms of vision, and advance drug design.

Writing in the journal Nature, the team, including Dr Norbert Krauss from Queen Mary’s School of Biological and Chemical Sciences, has detailed the active structure of a G-protein coupled receptor for the first time.

G-protein coupled receptors are found in the cell membranes of many different animals, and are involved in sensing light and a range of chemical signals including hormones, odours, pheromones and flavours. A huge variety of therapeutic drugs, such as alpha and beta blockers, antihistamines, dopamine agonists and opioids, work by regulating the behaviour of these receptors, and any information about their structure, particularly in an active form, is of valuable use to the pharmaceutical industry.

The team, lead by academics from the Charité (Medical School of Berlin) in Germany and Chonbuk National University in South Korea, studied a G-protein coupled receptor protein called Opsin, which is found in the rod cells of our eyes.

Opsin is the first link in a chain of chemical reactions which allow us to process images and see. First it joins together with another molecule called retinal, forming a protein called Rhodopsin. This in turn reacts with particles of light called photons to join with another protein, the G-protein and stimulate vision.

The team used a technique called X-ray crystallography to analyse the structure of Opsin when it was joined together with the G-protein. They found that Opsin had adopted an active structure, significantly different from its normal inactive state. This explains why Opsin can only bond with the G-protein in its active form, and provides a picture about how Rhodopsin is activated by light, like a mechanical switch.

Dr Krauss explains: “Our findings contribute to our understanding of the primary processes underlying vision. They might also help to model the interactions of other pairs of G-protein coupled receptors and G-proteins. As Rhodopsin/Opsin is now the first example of a G-protein coupled receptor where structures of both the active and inactive forms are known, it might also serve as a model system for selectively designing therapeutic drugs which function as agonists or antagonists of G-protein coupled receptor activity.”

Citation: 'Crystal structure of opsin in its G-protein-interacting conformation' by Patrick Scheerer, Jung Hee Park et al. will be published in the journal Nature on Thursday, 25th September.

Provided by Queen Mary, University of London

Explore further: Auditory deprivation from hearing loss may cause cognitive decline

Related Stories

NSA winds down once-secret phone-records collection program

19 hours ago

The National Security Agency has begun winding down its collection and storage of American phone records after the Senate failed to agree on a path forward to change or extend the once-secret program ahead of its expiration ...

Pipeline that leaked wasn't equipped with auto shut-off

19 hours ago

The pipeline that leaked thousands of gallons of oil on the California coast was the only pipe of its kind in the county not required to have an automatic shut-off valve because of a court fight nearly three ...

Recommended for you

Study identifies Ebola virus's Achilles' heel

13 hours ago

An international team including scientists from Albert Einstein College of Medicine of Yeshiva University and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) has identified the ...

Stem cell therapy for inherited skin blistering

15 hours ago

Promising results from a trial of a new stem-cell based therapy for a rare and debilitating skin condition have been published in the Journal of Investigative Dermatology. The therapy, involving infusions of ste ...

Simple recipe to make sensory hair cells in the ear

16 hours ago

Scientists at the Molecular Medicine Institute in Lisbon, Portugal, and at the University College London Ear Institute, United Kingdom, have developed a simple and efficient protocol to generate inner ear hair cells, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.