Space age engineers to verify control software for future robotic interplanetary missions

August 20, 2008
Artist's view of a future Mars Sample Return ascent module lifting off from Mars' surface with the Martian soil samples. Picture courtesy of ESA

An international team of engineers is to develop mission-critical control software for future European robotic space missions, it has been announced.

Dr. Declan Bates, a senior lecturer in the University of Leicester Department of Engineering, is part of an international consortium that has won €250K from the European Space Agency to develop new verification and validation techniques for next-generation satellite systems.

Dr. Bates will lead a team of researchers from the Control and Instrumentation Research Group on a two year project which aims to radically improve the reliability of the mission-critical control software required for the successful rendezvous of groups of satellites. The other members of the consortium are the Spanish advanced technology company GMV, the Canadian company NGC Aerospace, and the University of Oxford.

Dr. Bates said: "Leicester's involvement in this major research project is a direct result of our international reputation for research on the analysis of safety-critical control software.

"Future ESA missions, like the autonomous robotic satellites which will collect and return samples from the surface of Mars, require control systems involving complex requirements, system architectures, software algorithms and hardware implementations. A typical example is the design of a collision avoidance mode requiring a minimum separation distance between 'chaser' and 'target' satellites.

"Key elements for the development of such autonomous rendezvous control systems are the availability of reliable analysis tools for the verification and validation of complex system behaviour. It is essential to show that the control system is sufficiently robust to ensure the desired safety levels under a large number of adverse and unforeseen conditions.

"In this new project, we will develop and test control system analysis techniques to improve the reliability and efficiency of this verification and validation process."

Dr Bates added:

"This latest project is the third major research contract we have recently been awarded by ESA, and confirms that the Leicester Control Group is now at the forefront of European research on Space Control Systems."

Source: University of Leicester

Explore further: Exoskeleton keeps up with flow on the streets of New York

Related Stories

Exoskeleton keeps up with flow on the streets of New York

July 16, 2015

ReWalk Robotics, is a medical device company which has created ReWalk, an exoskeleton. The company team is focused on exoskeletons that can allow wheelchair-bound people to stand up and walk—not just in the rehab rooms ...

Sunny, with a chance of nuclear bullets

July 23, 2015

In space, far above Earth's turbulent atmosphere, you might think the one thing you don't have to worry about is weather. But you would be wrong. Just ask the people charged with the safety of the Cloud-Aerosol Lidar and ...

Robots under test for oil and gas rig duty

July 13, 2015

A robot building on ESA's ExoMars rover is bidding to win a place on oil and gas production rigs around the world, to work in remote and hazardous environments.

Is cyberjacking a new threat to air travel?

July 13, 2015

When Malaysia Airlines flight MH370 vanished en route to Beijing in March 2014, the horror and mystery of the story captivated the public. And as with any mystery, the lack of a definitive answer left a void for speculation ...

Recommended for you

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.