Scientists create DNA tubes with programmable sizes for nanoscale manufacturing

August 29, 2008

Scientists at the California Institute of Technology (Caltech) have developed a simple process for mass producing molecular tubes of identical--and precisely programmable--circumferences. The technological feat may allow the use of the molecular tubes in a number of nanotechnology applications.

The molecular tubes are composed of wound-up strands of DNA. DNA has been considered an ideal construction material for self-assembling molecular structures and devices because two complementary DNA strands can automatically recognize and bind with each other. DNA has been used to form rigid building blocks, known as tiles, and these tiles can further assemble into extended lattice structures, including tubes. However, it has been difficult to control the diameters of such tubes.

Peng Yin, a senior postdoctoral scholar in bioengineering and computer science at Caltech's Center for Biological Circuit Design, along with his colleagues has designed a series of flexible, single-stranded DNA molecules, called single-stranded DNA tiles. Each single-stranded tile is exactly 42 bases long and contains four modular binding sites. By pairing up the complementary binding sites, these single-stranded tiles bind with each other in a particular orientation like Lego pieces snapped together, forming a tube composed of parallel DNA helices.

The circumference of the resulting tube is determined by the number of different 42-base pieces used in its construction. For example, four pieces create a tube with a circumference of 12 billionths of a meter (or 12 nanometers); five pieces, a 15-nanometer-circumference tube; and six pieces, an 18-nanometer tube.

"We are not the first to make DNA tubes with controlled circumferences. However, compared with previous approaches, our method is distinctively simple and modular," says Yin. The simplicity and modularity of their approach permits the description of the tube design using a simple graphical abstraction system developed earlier this year in the laboratory of Niles Pierce, associate professor_of applied and computational mathematics and bioengineering at Caltech.

Just as a variety of wood sizes are used in construction projects--two by four inches for framing walls, two by eight inches for roof rafters, or four by four inches for fence posts--having nanotubes of various, precisely controlled sizes provides their user with more options. In addition, nanotubes of different sizes have varying mechanical properties; for example, tubes with a smaller diameter are more flexible and tubes with a larger diameter are more rigid. The nanotubes might eventually serve as templates for manufacturing nanowires with controlled diameters; the diameters of electron-conducting nanowires would help determine the electronic properties of the devices they are used to construct.

"The simplicity of the single-stranded tile approach promises to enable us to design ever more complex self-assembling molecular systems. The work is simultaneously elegant and useful," says Erik Winfree, associate professor of computer science, computation and neural systems, and bioengineering at Caltech. Winfree's laboratory was the primary host of Yin's research at Caltech.

The paper, "Programming DNA Tube Circumferences," was published August 8 in the journal Science.

Source: California Institute of Technology

Explore further: Science on the surface of a comet

Related Stories

Science on the surface of a comet

July 31, 2015

Complex molecules that could be key building blocks of life, the daily rise and fall of temperature, and an assessment of the surface properties and internal structure of the comet are just some of the highlights of the first ...

2004 Nobel chemistry winner Irwin Rose dies at 88

June 3, 2015

Irwin Rose, a biochemist who shared the 2004 Nobel Prize in chemistry for discovering a way that cells destroy unwanted proteins—the basis for developing new therapies for diseases such as cervical cancer and cystic fibrosis—has ...

A better way to build DNA scaffolds

May 6, 2015

Imagine taking strands of DNA - the material in our cells that determines how we look and function - and using it to build tiny structures that can deliver drugs to targets within the body or take electronic miniaturization ...

Researchers shine light on origin of bioluminescence

May 4, 2015

In the mountains of Virginia, millipedes have bright yellow and black colors to warn enemies that they are toxic and not worth eating. Their cousins in California convey this warning in a very different way—by glowing in ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.