Scientists a step closer to producing fuel from bacteria

August 6, 2008

Scientists at the University of Sheffield have shown how bacteria could be used as a future fuel. The research, published in the journal Bioinformatics, could have significant implications for the environment and the way we produce sustainable fuels in the future.

Like all living creatures, bacteria sustain themselves through their metabolism, a huge sequence of chemical reactions that transform nutrients into energy and waste.

Using mathematical computer models, the Sheffield team have mapped the metabolism of a type of bacteria called Nostoc. Nostoc fixes nitrogen and, in doing so, releases hydrogen that can then potentially be used as fuel. Fixing nitrogen is an energy intensive process and it wasn't entirely clear exactly how the bacterium produces the energy it needs in order to perform. Now the new computer system has been used to map out how this happens.

Until now, scientists have had difficulties identifying bacteria metabolic pathways. The bacterial metabolism is a huge network of chemical reactions, and even the most sophisticated techniques can only measure a small fraction of its activity.

Dr Guido Sanguinetti, from the University's Department of Computer Science, who led the study, said: "The research uncovered a previously unknown link between the energy machinery of the Nostoc bacterium and its core nitrogen metabolism. Further investigation of this pathway might lead to understanding and improvement of the hydrogen production mechanism of these bacteria. It will certainly be some time before a pool of bacteria powers your car, but this research is yet another small step towards sustainable fuels."

He added: " The next step for us will be further investigation into hydrogen production, as well as constructing more mathematical models capable of integrating various sources of biological data."

Source: University of Sheffield

Explore further: Imaging glucose uptake activity inside single cells

Related Stories

Imaging glucose uptake activity inside single cells

July 17, 2015

Researchers at Columbia University have reported a new approach to visualize glucose uptake activity in single living cells by light microscopy with minimum disturbance. In a recent study published in Angewandte Chemie International ...

Making the biofuels process safer for microbes

July 2, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy lifting in the ...

Iron: A biological element?

June 25, 2015

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
not rated yet Aug 06, 2008
This is all great academic stuff - nice to know but unlikely to lead to highly impractical, pie in the sky, H2 fueling your car in the foreseeable future. A much better solution is to use the existing infrastructures for easily stored, energy dense hydrocarbons generated by algae using photosynthesis. Virtually the same hydrocarbons that are now pumped out of the ground.

This is especially true of Botryococcus Braunii var. Ninsei which produces voluminous quantities of C30 - C37 hydrocarbons from CO2 and sunlight. An major advantage of this patented variety is that it releases the oil for recovery with gentle agitation, leaving the algae unharmed and available for further oil production.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.