The mystery of young stars near black holes solved

August 22, 2008

The mystery of how young stars can form within the deep gravity of black holes has been solved by a team of astrophysicists at the Universities of St Andrews and Edinburgh.

The team, partly funded by the Science and Technology Facilities Council (STFC), made the discovery after developing computer simulations of giant clouds of gas being sucked into black holes. The new research may help scientists gain better understanding of the origin of stars and supermassive black holes in our Galaxy and the Universe. The new discovery is published in the journal Science.

Until now, scientists have puzzled over how stars could form around a black hole, since molecular clouds - the normal birth places of stars - would be ripped apart by the black hole's immense gravitational pull.

However, the new study by Professor Ian Bonnell (St Andrews) and Dr Ken Rice (Edinburgh) found that stars appear to form from an elliptical-shaped disc, the remnant of a giant gas cloud torn apart as it encounters a black hole.

The discovery of hundreds of young stars, of high masses and making oval-shaped orbits around a black hole three million times more massive than the sun, and at the centre of our Galaxy, is described as one of the most exciting recent discoveries in astrophysics.

Prof Bonnell comments "These simulations show that young stars can form in the neighbourhood of supermassive black holes as long as there is a reasonable supply of massive clouds of gas from further out in the Galaxy.

The simulations, performed on the Scottish Universities Physics Alliance (SUPA) SGI Altix supercomputer - taking over a year of computer time - followed the evolution of two separate giant gas clouds up to 100,000 times the mass of the sun, as they fell towards the supermassive black hole.

The simulations show how the clouds are pulled apart by the immense gravitational pull of the black hole. The disrupted clouds form into spiral patterns as they orbit the black hole; the spiral patterns remove motion energy from gas that passes close to the black hole and transfers it to gas that passes further out. This allows part of the cloud to be captured by the black hole while the rest escapes. In these conditions, only high mass stars are able to form and these stars inherit the eccentric orbits from the disc. These results match the two primary properties of the young stars in the centre of our Galaxy: their high mass and their eccentric orbits around the supermassive black hole.

Dr Rice comments " The crucial element was the modelling of the heating and cooling of the gas as this tells us how much mass is needed for part of the gas to have enough gravity to overcome its own gas pressure, and thus form a star. The heating is caused by the extreme compression of the cloud as it is squashed and pulled apart by the black hole. This is balanced by the cooling which requires detailed knowledge of how quickly the radiation can escape the cloud. "

Professor Bonnell concluded, “That the stars currently present around the Galaxy's supermassive black hole have relatively short lifetimes of ~10 million years, suggests that this process is likely to be repetitive. Such a steady supply of stars into the vicinity of the black hole, and a diet of gas directly accreted by the black hole, may help us understand the origin of supermassive black holes in our and other galaxies in the Universe."

This article refers to a paper published in Science: "Star Formation Around Supermassive Black Holes" (22 August 2008).

Source: Science and Technology Facilities Council

Explore further: ASKAP seeks out hydrogen content in distant galaxies

Related Stories

Star formation near supermassive black holes

June 22, 2015

Most if not all galaxies are thought to host a supermassive black hole in their nuclei, a finding that is both one the most important and amazing in modern astronomy. A supermassive black hole grows by accreting mass, and ...

Why can't we see the center of the Milky Way?

July 10, 2015

For millennia, human beings have stared up at the night sky and stood in awe of the Milky Way. Today, stargazers and amateur astronomers continue in this tradition, knowing that what they are witnessing is in fact a collection ...

Radio astronomers see black hole come to life

July 9, 2015

42 million light years away, 20 million times the mass of the Sun, and coming back to life. A team of radio astronomers, led by Dr Megan Argo of the Jodrell Bank Centre for Astrophysics, are watching a previously dormant ...

Ancient black hole defied rules of galaxy formation

July 9, 2015

Black holes can be found at the centres of most galaxies. Most have little mass compared with their host galaxy. ETH researchers, however, have discovered a particularly massive black hole, which clearly grew so quickly that ...

Swift satellite reveals a black hole bull's-eye

July 9, 2015

What looks like a shooting target is actually an image of nested rings of X-ray light centered on an erupting black hole. On June 15, NASA's Swift satellite detected the start of a new outburst from V404 Cygni, where a black ...

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

New names and insights at Ceres

July 29, 2015

Colorful new maps of Ceres, based on data from NASA's Dawn spacecraft, showcase a diverse topography, with height differences between crater bottoms and mountain peaks as great as 9 miles (15 kilometers).

'Bathtub rings' suggest Titan's dynamic seas

July 28, 2015

Saturn's moon, Titan, is the only object in the Solar System other than Earth known to have liquid on its surface. While most of the lakes are found around the poles, the dry regions near the equator contain signs of evaporated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.