Molecular bridge serves as a tether for a cell's nucleus

August 8, 2008
Misshapen membrane. When cells lack the protein Ima1, their nuclei appear deformed (bottom) rather than spherical.

(PhysOrg.com) -- A cell's nucleus - home of it its most precious contents — is a delicate envelope that, without support, is barely able to withstand the forces that keep it in place. Now, researchers have discovered a network of molecules in the nuclear membrane that provide the nucleus with rigidity and also facilitate a previously undiscovered form of communication between the cell’s nucleus and its cytoplasm.

In the August 8 issue of Cell, the scientists, led by Nobel Prize winner Gьnter Blobel, say that this mechanism is different from the usual traffic of molecular signals that enter and exit the nucleus through pores in the nuclear envelope.

“This is a distinct kind of physical connection between two compartments in a cell — the cytoplasm and the nucleus,” says the study’s lead investigator, Megan King, of Blobel’s Laboratory of Cell Biology. “It really opens up the possibility that there is a basic process going on that affects gene expression in ways that we had not understood before.”

King describes the network as a bridge of molecules that extends from the interior of the nucleus — specifically, the chromatin, the complex of DNA and proteins that makes up chromosomes – into the cell cytoplasm and its network of microtubules that provides structure to the cell. Though some of the proteins had been previously identified, King, Blobel and researcher Theodore Drivas discovered one in particular, called Ima1, that serves as one of the bridge’s pillars.

In fission yeast, the single-cell eukaryotes that the researchers used as a model organism, the nucleus has to stay centered within the cell before cell division is initiated. In other eukaryotes, microtubules push on the nucleus by interacting with nuclear membrane proteins from two previously discovered families: KASH domain proteins, which span the outer nuclear membrane, and SUN domain proteins, which reside in the inner nuclear membrane. However, King and the other researchers suspected that this bridge alone could not be strong enough to keep the nuclear structure stable against the forces applied by the cell’s cytoskeleton.

The researchers now say that two additional proteins are part of the yeast nuclear bridge. One is Kms2, which is part of the KASH family, and the other is Sad1, a member of the SUN family. Kms2 forms the outside pillar of the bridge and couples forces from microtubules to the protein bridge anchored on the inside by Sad1. But the scientists suspected there had to be an anchor for Sad1, or the bridge could not withstand such forces.

They then examined Ima1, which is found in many species, including humans. The protein binds to heterochromatin, which is a tightly packed form of DNA and is critically located in the inner membrane of the nucleus. Indeed, a series of experiments demonstrated that Ima1 forms the strong ground support for the side of the bridge that attaches inside the nucleus, and that other proteins, namely the Ndc80 complex, strengthen the connection, like a nut-and-bolt arrangement. Together, they proved able to absorb the forces transmitted through the centrosome on the outside of the nucleus. Whenever Ima1 or the Ndc80 complex was compromised, the bridges fell apart.

“The proteins act like players in a game of tug-of-war,” says King. “They will move side to side in an ordered line, remaining standing as long as the teams are of similar strengths. However, once one team pulls with a force that cannot be countered by the second team, both teams fall to the ground in a jumble.” When decoupled from chromatin, the nuclear envelope pays the price, becoming deformed and fragmented.

“This communication is physical, and it shows us how chromatin can support a cytoplasmic function, while, on the other hand, microtubules have the ability to affect nuclear functions,” King says.

Citatoin: Cell 134(3): 427–438 (August 8, 2008)

Provided by Rockefeller University

Explore further: DNA chip offers big possibilities in cell studies

Related Stories

DNA chip offers big possibilities in cell studies

August 25, 2016

A UT Dallas physicist has developed a novel technology that not only sheds light on basic cell biology, but also could aid in the development of more effective cancer treatments or early diagnosis of disease.

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

How cell nuclei squeeze into tight spaces

August 22, 2016

As cells move throughout our bodies, they often have to squeeze through tight nooks and crannies in their environment, reliably springing back to their original shape. The structures involved in this process are still a mystery, ...

Hushing the X chromosome

August 8, 2016

Early in the development of female embryos, a crucial event occurs in all cells: An X chromosome is silenced. Whereas males have only one X chromosome, females have two—which means they can have twice as many proteins generated ...

Recommended for you

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

Theorists solve a long-standing fundamental problem

August 30, 2016

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds ...

Reconstructing the sixth century plague from a victim

August 30, 2016

Before the infamous Black Death, the first great plague epidemic was the Justinian plague, which, over the course of two centuries, wiped out up to an estimated 50 million (15 percent) of the world's population throughout ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Aug 09, 2008
Great work! Understand the mechanics of normal cell function and you can identify causes of malfunction. "Protein" is a mystery we have yet to understand!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.