Green catalysts provide promise for cleaning toxins and pollutants

Aug 18, 2008

Tetra-Amido Macrocyclic Ligands (TAMLs) are environmentally friendly catalysts with a host of applications for reducing and cleaning up pollutants, and a prime example of "green chemistry." Carnegie Mellon University's Terry Collins, the catalyst's inventor, believes that the small-molecule catalysts have the potential to be even more effective than previously proven.

Collins will discuss how iron-TAMLs (Fe-TAMLs) work and areas for further research, citing evidence from mechanistic and kinetic studies of the catalyst on Monday, Aug. 18 at the 236th national meeting of the American Chemical Society in Philadelphia.

The oxidation catalysts are the first highly effective mimics of peroxidase enzymes. When partnered with hydrogen peroxide, they are able to convert harmful pollutants into less toxic substances. Made from the common elements of biochemistry, carbon, hydrogen, nitrogen and oxygen around a reactive iron core, Fe-TAMLs are less toxic and usable at extremely low concentrations. Additionally, their composition also results in very strong chemical bonds that are not broken down by the highly reactive oxygen intermediaries formed during the reaction with hydrogen peroxide.

"Our recent studies into what occurs during the chemical reaction caused by TAMLs proves that the catalysts are indeed really close mimics of peroxidase enzymes," said Collins, the Thomas Lord Professor of Chemistry and director of the Center for Green Science at Carnegie Mellon. "By knowing the mechanics of the reactions, we can fine tune the catalysts for even better performance."

Research by the Collins group at Carnegie Mellon has shown that Fe-TAMLs have enormous potential to provide clean and safe alternatives to existing industrial practices and provide ways to remediate other pressing environmental problems that currently lack solutions. The catalysts have proven effective in degrading estrogenic compounds, cleaning waste water from textile manufacturing, reducing fuel pollutants, treating pulp and paper processing byproducts and decontaminating a benign simulant of anthrax.

Source: Carnegie Mellon University

Explore further: Killer sea snail a target for new drugs

Related Stories

Chemists characterize 3-D macroporous hydrogels

Jun 30, 2015

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Researchers study nanogold's potential in biomedicine

Jan 13, 2015

Peng Zhang is excited about gold, and you should be too. In particular, he's excited about nanogold, structures of a handful of atoms measuring only a few nanometers in diameter. Zhang, a researcher at Dalhousie ...

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Recommended for you

Genetic switch detects TNT

47 minutes ago

Cleaning-up post-war explosive chemicals could get cheaper and easier, using a new genetic 'switch' device, being developed by scientists at the University of Exeter to detect damaging contaminants, such ...

Why Matisse's bright yellow pigments fade to beige

1 hour ago

An international team of scientists led by Jennifer Mass, Winterthur Museum's senior scientist and an affiliated University of Delaware faculty member, has announced new findings on why a bright yellow pigment ...

Killer sea snail a target for new drugs

18 hours ago

University of Queensland pain treatment researchers have discovered thousands of new peptide toxins hidden deep within the venom of just one type of Queensland cone snail.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.