Green catalysts provide promise for cleaning toxins and pollutants

August 18, 2008

Tetra-Amido Macrocyclic Ligands (TAMLs) are environmentally friendly catalysts with a host of applications for reducing and cleaning up pollutants, and a prime example of "green chemistry." Carnegie Mellon University's Terry Collins, the catalyst's inventor, believes that the small-molecule catalysts have the potential to be even more effective than previously proven.

Collins will discuss how iron-TAMLs (Fe-TAMLs) work and areas for further research, citing evidence from mechanistic and kinetic studies of the catalyst on Monday, Aug. 18 at the 236th national meeting of the American Chemical Society in Philadelphia.

The oxidation catalysts are the first highly effective mimics of peroxidase enzymes. When partnered with hydrogen peroxide, they are able to convert harmful pollutants into less toxic substances. Made from the common elements of biochemistry, carbon, hydrogen, nitrogen and oxygen around a reactive iron core, Fe-TAMLs are less toxic and usable at extremely low concentrations. Additionally, their composition also results in very strong chemical bonds that are not broken down by the highly reactive oxygen intermediaries formed during the reaction with hydrogen peroxide.

"Our recent studies into what occurs during the chemical reaction caused by TAMLs proves that the catalysts are indeed really close mimics of peroxidase enzymes," said Collins, the Thomas Lord Professor of Chemistry and director of the Center for Green Science at Carnegie Mellon. "By knowing the mechanics of the reactions, we can fine tune the catalysts for even better performance."

Research by the Collins group at Carnegie Mellon has shown that Fe-TAMLs have enormous potential to provide clean and safe alternatives to existing industrial practices and provide ways to remediate other pressing environmental problems that currently lack solutions. The catalysts have proven effective in degrading estrogenic compounds, cleaning waste water from textile manufacturing, reducing fuel pollutants, treating pulp and paper processing byproducts and decontaminating a benign simulant of anthrax.

Source: Carnegie Mellon University

Explore further: TAML catalysts safely and effectively remove estrogenic compounds from wastewater

Related Stories

Catalytic gold nanoclusters promise rich chemical yields

August 25, 2014

( —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries revealing that ...

Chemists characterize 3-D macroporous hydrogels

June 30, 2015

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that can be used for ...

Researchers team up on potential fuel cell advance

December 19, 2013

Scientists at SLAC National Accelerator Laboratory put together clues from experiments and theory to discover subtle variations in the way fuel cells generate electricity – an advance that could lead to ways to make the ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.