Globular clusters tell tale of star formation in nearby galaxy metropolis

Aug 05, 2008
These images taken by the NASA/ESA Hubble Space Telescope show four members of the Virgo cluster of galaxies, the nearest large galaxy cluster to Earth. They are part of a survey of globular star clusters in 100 of Virgo's galaxies. Globular clusters, dense bunches of hundreds of thousands of stars, have some of the oldest surviving stars in the universe. Most of the star clusters in the Virgo survey are older than 5 billion years. The Hubble study found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy. Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters, which, at that distance, look like individual stars bunched up around the galaxies, instead of groupings of stars. Comprised of over 2,000 galaxies, the Virgo cluster is located about 54 million light-years away. Astronomers made these composite images from the advanced camera's full field-of-view observations. They also used modeling data to fill in a narrow gap between the camera's detectors. The images were taken from December 2002 to December 2003. Credit: ESA, NASA and E. Peng (Peking University, Beijing)

Globular star clusters, dense bunches of hundreds of thousands of stars, contain some of the oldest surviving stars in the Universe. A new international study of globular clusters outside our Milky Way Galaxy has found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy.

Astronomers used the NASA/ESA Hubble Space Telescope to identify over 11 000 globular clusters in the Virgo cluster of galaxies, most of which are more than 5 billion years old. Comprised of over 2 000 galaxies, the Virgo cluster is located about 54 million light-years away and is the nearest large galaxy cluster to Earth. Along with Virgo, the sharp vision of Hubble's Advanced Camera for Surveys (ACS) resolved the star clusters in 100 galaxies of various sizes, shapes, and brightness – even in faint, dwarf galaxies.

"It's hard to distinguish globular clusters from stars and galaxies using ground-based telescopes", explained Eric Peng of Peking University in Beijing, China, and lead author of the Hubble study.

Hubble's "eye" is so sharp that it was able to pick out the fuzzy globular clusters from stars in our galaxy and from faraway galaxies in the background. "With Hubble we were able to identify and study about 90 percent of the globular clusters in all our observed fields. This was crucial for dwarf galaxies that have only a handful of star clusters".

The team found a bounty of globular clusters (from a few dozen to several dozen) in most of the dwarf galaxies within 3 million light-years of the cluster's centre. This happens to be the same region where the giant elliptical galaxy Messier 87 resides. These numbers were surprisingly high considering the low masses of the dwarfs they inhabited. By contrast, dwarfs in the outskirts of the cluster had fewer globulars.

"Our study shows that the efficiency of star cluster formation depends on the environment", said Patrick Cote of the Herzberg Institute of Astrophysics in Victoria, Canada. "Dwarf galaxies closest to Virgo's crowded centre contained more globular clusters than those farther away".

Astronomers have long known that the giant elliptical galaxy at the cluster's centre, Messier 87, also hosts a larger than predicted population of globular star clusters. However, the origin of so many globulars has been a long-standing mystery. Astronomers have theorised that many of the clusters may have been snatched from smaller galaxies that ventured too close to it.

"We found few or no globular clusters in galaxies within 130 000 light-years from Messier 87, suggesting the giant galaxy stripped the smaller ones of their star clusters", Peng said. "These smaller galaxies are contributing to the buildup of Messier 87".

Evidence of Messier 87's galactic cannibalism comes from an analysis of the globular clusters' composition. "In Messier 87 there are three times as many globulars deficient in heavy elements, such as iron, than globulars rich in those elements", Peng said. "This suggests that many of these 'metal-poor' star clusters may have been stolen from nearby dwarf galaxies, which also contain globulars deficient in heavy elements".

Studying globular star clusters is critical to understanding the early, intense star-forming episodes that mark galaxy formation. They are known to reside in all but the faintest of galaxies.

"Star formation near the core of Virgo is very intense and occurs in a small volume over a short amount of time", Peng noted. "It may be more rapid and more efficient than star formation in the outskirts. The high star-formation rate may be driven by the gravitational collapse of dark matter, an invisible form of matter, which is denser and collapses sooner near the cluster's centre. Messier 87 sits at the centre of a large concentration of dark matter, and all of these globulars near the centre probably formed early in the history of the Virgo cluster."

The smaller number of globular clusters in the dwarf galaxies sitting farther away from the centre may be due to the masses of the star clusters that formed, Peng said. "Star formation farther away from the central region was not as robust, which may have produced only less massive star clusters that dissipated over time", he explained.

The astronomers also obtained accurate distances to 84 of the 100 galaxies in the Hubble study.

The results appeared on 1 July 2008 in The Astrophysical Journal.

Source: ESA/Hubble Information Centre

Explore further: Hubble video shows shock collision inside black hole jet

Related Stories

VLT discovers new kind of globular star cluster

May 13, 2015

Observations with ESO's Very Large Telescope in Chile have discovered a new class of 'dark' globular star clusters around the giant galaxy Centaurus A. These mysterious objects look similar to normal clusters, ...

More evidence that the Milky Way has four spiral arms

May 12, 2015

Astronomers have been arguing over just how many spiral arms our galaxy exhibits. Is the Milky Way a four or two-armed spiral galaxy? Astronomers had often assumed the Milky Way was potentially a four-armed ...

Giant cosmic tsunami wakes up comatose galaxies

Apr 24, 2015

Galaxies are often found in clusters, with many 'red and dead' neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory ...

Hubble catches a stellar exodus in action

May 14, 2015

Using NASA's Hubble Space Telescope, astronomers have captured for the first time snapshots of fledgling white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of ...

Recommended for you

NASA telescopes set limits on space-time quantum 'foam'

27 minutes ago

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

Shining message about the end of the Dark Ages

2 hours ago

An international team, including researchers from the Centre for Astronomy of Heidelberg University (ZAH), has discovered three "cosmic Methusalems" from the earliest years of the universe. These unusual stars are about 13 ...

The kinematics of merging galaxies

3 hours ago

The unprecedented sensitivity of space telescopes has powered a revolution over the past decade in our understanding of galaxies in the young universe during its first billion years of existence. These primitive ...

Hubble video shows shock collision inside black hole jet

17 hours ago

When you're blasting though space at more than 98 percent of the speed of light, you may need driver's insurance. Astronomers have discovered for the first time a rear-end collision between two high-speed ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

Question
4 / 5 (1) Aug 05, 2008
Can anyone explain how star cluster can remain stable for billions of years?
Why haven't they collapsed gravitationally into blackholes and disappeared eons ago?
E_L_Earnhardt
1 / 5 (1) Aug 05, 2008
The first stars were powered by dark matter!
TimESimmons
1 / 5 (1) Aug 06, 2008
To Question. An explanation for globular clusters:-

http://www.presto...ndex.htm
vidyunmaya
1 / 5 (2) Aug 06, 2008
Clear our Minds-Project Data-Interpretation
with Comprehension of the Universe. At this scale, question of gravity super-imposition is wrong and misleading.Stability of an elleptical Body- say Cosmic Pot -becomes a drive.
Less mass, more Energy and naturally a sequence through Globular Clusters - Spherical mode formations- Then comes Spiral mode flows .
This sequence is identified clearly by author in Universal Plama Energy Model- 1991 and
Vidyardhi nanduri ,May 2003,Cosmic Pot Energy: New Projections sd [dot] stsci [dot] edu/astrophysical_laboratory/proceedings [dot] html. Book: VIDYARDHI NANDURI Search beyond Dark Matter-Tamasoma Jyothirgamyam TXU 1-282-571 JUNE 2005
vidyunmaya
1 / 5 (1) Aug 06, 2008
Sub: FIELD UNIVERSE LINKS- Cosmology Vedas
COSMOLOGY VEDAS-Interlinks-FREE DOWNLOAD : http://www.buymye...kId=1422
http://www.earthp...ri3.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.