How Do Galaxies Grow?

Aug 26, 2008
Composite colour-image of the brightest galaxies in four groups located about 4 billion light-years away. The galaxies are ordered in increasing stellar mass, i.e. a rough time sequence. The brightest galaxies in group 1 and 2 both have obvious bright, gravitationally bound companions. The inset in this image obtained with the Hubble Space Telescope shows that the brightest galaxy in group 3 has also a double nucleus. Thus, these galaxies are currently in the process of merging. This discovery provides unique and powerful validation of hierarchical formation as manifested in both galaxy and cluster assembly.

How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass?

To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Z├╝rich, Switzerland, who led the research.

The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster.

In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups.

The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable to the most massive galaxies belonging to clusters.

"Most surprising is that in three of the four groups, the brightest galaxy also has a bright companion galaxy. These galaxy pairs are merging systems," says Tran.

The brightest galaxy in each group can be ordered in a time sequence that shows how luminous galaxies continue to grow by merging until recently, that is, in the last 5 billion years. It appears that due to the most recent episode of this 'galactic cannibalism', the brightest galaxies became at least 50% more massive.

This discovery provides unique and powerful validation of hierarchical formation as manifested in both galaxy and cluster assembly.

"The stars in these galaxies are already old and so we must conclude that the recent merging did not produce a new generation of stars," concludes Tran. "Most of the stars in these galaxies were born at least 7 billion years ago."

Source: ESO

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Hubble catches a stellar exodus in action

May 14, 2015

Using NASA's Hubble Space Telescope, astronomers have captured for the first time snapshots of fledgling white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of ...

Astronomers unveil the farthest galaxy

May 05, 2015

An international team of astronomers led by Yale University and the University of California-Santa Cruz have pushed back the cosmic frontier of galaxy exploration to a time when the universe was only 5% of ...

Image: The tumultuous heart of the Large Magellanic Cloud

Mar 31, 2015

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

Measuring galaxy evolution with globular clusters

Mar 23, 2015

Globular clusters are gravitationally bound ensembles of stars, as many as a million stars in some cases, grouped in roughly spherical clusters with diameters as small as only tens of light-years. Globular ...

"Mini supernova" explosion could have big impact

Mar 16, 2015

In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and ...

Recommended for you

What are extrasolar planets?

10 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

A curious family of giant exoplanets

11 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

Astrobiology students explore alien environment on Earth

11 hours ago

Sonny Harman never thought he'd be able to travel far enough to do field work. That's because the Penn State doctoral student studies atmospheres on other planets. But to his surprise, Harman recently stepped ...

NASA image: Hubble revisits tangled NGC 6240

11 hours ago

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. Hubble previously released an image of this galaxy back in 2008, but the knotted region, shown ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
4 / 5 (1) Aug 26, 2008
There are a few galaxy clusters near us that have potentially interacting-merging galaxies near their cores (The Local Group, Coma Cluster, Fornax Cluster, Perseus Cluster, to name a few). But it does appear that most major galaxy mergers in clusters took place in the distant past. Perhaps in our recent epoch, most of these major-mergers in clusters (which spawned cD galaxies & Brightest Cluster Galaxies) have already taken place and only smaller galaxies & dwarf galaxies remain to be cannabalized (Think M 87 in the Virgo Cluster). This scenario seems to make sense considering 4 billion years ago, more massive galaxy clusters were just taking shape & several large galaxies near the cluster center were in the process of merging. This may also explain why active quasars are more abundant in the distant (& early) universe than is seen nearby today.
smiffy
4 / 5 (1) Aug 27, 2008
If the theory is correct and galaxies do merge regularly does anyone know of the possible effects the mergers would have on planetary systems in the galaxies concerned?

It seems to me that our solar system with its planets in circular orbit hasn't had a close encounter with a passing star which would (I'm guessing) cause the orbits to become elliptical.

Has anyone done a simulation or the maths to determine what kind of probability this kind of disturbance has?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.