The way to a virus' 'heart' is through its enzymes

July 9, 2008

The arrival of bluetongue virus (BTV) in the UK last year posed a major threat to the economy and the increasing temperatures of our changing climate mean it is here to stay. If we are to fight this disease, which has had a major impact on farming already, we must discover how it works. A review published in the August issue of the Journal of General Virology outlines our current understanding of the "heart" of the virus, which may help us to develop antiviral therapies to treat many human pathogens.

Bluetongue disease is transmitted to ruminant animals like cows when they are bitten by a midge carrying the virus. It is endemic in tropical and subtropical countries and represents a major economic threat in many parts of the world. Until recently, outbreaks in European countries have been sporadic and relatively rare but since 1998 outbreaks of bluetongue in mainland Europe have been common events, moving steadily northwards.

In September 2007 the virus reached the UK where it has become a major threat to farming. Because of the seriousness of the animal disease caused by bluetongue virus, it has been a subject of intense molecular study for the last three decades and is now one of the best understood viruses at the molecular and structural levels.

"Replication of the viral genome is the 'heart' of a virus," said Professor Polly Roy from the London School of Hygiene and Tropical Medicine. "It is the key process that allows establishment of infection. Understanding the fundamental processes of how bluetongue virus initiates and sustains infection will help us determine the best way to prevent and control bluetongue disease."

When bluetongue virus enters animal cells, infection is initiated through a process which requires a number of enzymes to work together. We know this thanks to a range of research methods including the use of genetically engineered proteins and by looking at the 3D structure of the enzymes. Now that it is possible to synthesise the structures that allow replication of the virus in the lab, scientists will be able to examine the effects of viral mutations on replication. Recently a DNA-based system has been developed that will provide breakthrough experimental techniques of relevance to many viruses that infect humans and animals. It will also pave the way for the development of a highly safe and successful vaccine against bluetongue disease.

"Viruses depend on the cells they infect for certain functions that enable them to exist. This dependence limits the number of possible targets for the development of antiviral therapy," said Professor Roy. "Bluetongue virus uses unique viral enzymes to replicate. At the Roy laboratory we have been using bluetongue as a model system to study detailed molecular processes for many years. This contributes to a better understanding of other similar RNA genome viruses, such as rotavirus, which are also responsible for a large burden of disease in humans."

"The knowledge accumulated through this work will have an impact on the fundamental understanding of the structure-function relationships underpinning bluetongue virus replication," said Professor Roy. "It will also contribute to the understanding of viral replication in general and help us to understand the very essence of infection process of viruses. Understanding the fundamental biological processes of virus replication is the best route to achieving effective control of the diseases caused by the virus, in a way that is both clinically effective and safe."

Source: Society for General Microbiology

Explore further: Midge-hunting scientists tackle spread of devastating bluetongue virus

Related Stories

Towards understanding bluetongue outbreaks

August 14, 2008

A recent article published in Virology, reports the identification of a bluetongue virus strain that caused the northern European Bluetongue outbreak in 2006. Comparison of the virus strain with the sequences of other previously ...

Vectors of bluetongue get a name

October 6, 2011

Scientists of the Antwerp Institute of Tropical Medicine (ITG) have developed a molecular technique to easily and dependably identify the biting midges that spread bluetongue disease. Until know this identification was a ...

Farm animal disease to increase with climate change

June 29, 2011

Researchers looked at changes in the behaviour of bluetongue – a viral disease of cattle and sheep - from the 1960s to the present day, as well as what could happen to the transmission of the virus 40 years into the ...

Protecting humans and animals from diseases in wildlife

October 7, 2009

Avian influenza (H5N1), rabies, plague, Bovine Spongiform Encephalopathy (BSE), and more recently swine flu (H1N1) are all examples of diseases that have made the leap from animals to humans. As the list continues to grow, ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.