A Telescope Made of Moondust

July 10, 2008
A Telescope Made of Moondust
Astronauts erect a telescope on the Moon, an artist's concept.

A gigantic telescope on the Moon has been a dream of astronomers since the dawn of the space age. A lunar telescope the same size as Hubble (2.4 meters across) would be a major astronomical research tool. One as big as the largest telescope on Earth—10.4 meters across—would see far more than any Earth-based telescope because the Moon has no atmosphere. But why stop there? In the Moon's weak gravity, it might be possible to build a telescope with a mirror as large as 50 meters across, half the length of a football field—big enough to analyze the chemistry on planets around other stars for signs of life.

That's the dream of Peter C. Chen, astrophysicist at NASA Goddard Space Flight Center. And he wants to build it using lunar dust—because that might just be the most economical approach.

"If we lift all materials from Earth, we're limited by what a rocket can carry to the Moon," Chen explains. "But on the Moon, you're absolutely surrounded by lunar dust"—a prized natural resource in the eyes of Chen, an expert in composite materials.

Composite materials are synthetic materials made by mixing fibers or granules of various materials into epoxy and letting the mixture harden. Composites combine two valuable properties: ultralight weight and extraordinary strength. On Earth, for example, bicycle frames made of a composite of carbon fibers and epoxy are favorites of racing cyclists.

"Why not make a composite using lunar dust?" asks Chen, who is also adjunct research professor at the Catholic University of America in Washington, D.C. So in his laboratory, he mixed NASA's simulated lunar dust called JSC-1A Coarse Lunar Regolith Simulant with epoxy and a small quantity of carbon nanotubes, a relatively recently discovered form of carbon that has many unusual and useful properties. The result? "It came out as hard, dense, and strong as concrete."

Excited, Chen made a small telescope mirror using a long-known technique called spin-casting. First he formed a 12-inch (30-cm) diameter disk of lunar-simulant/epoxy composite. Then he poured a thin layer of straight epoxy on top, and spun the mirror at a constant speed while the epoxy hardened. The top surface of the epoxy assumed a parabolic shape—just the shape needed to focus an image. When the epoxy hardened, Chen inserted it into a vacuum chamber to deposit a thin layer of reflective aluminum onto the parabolic surface to create a 12-inch telescope mirror.

The carbon nanotubes make the composite a conductor. Conductivity would allow a large lunar telescope mirror to reach thermal equilibrium quickly with the monthly cycle of lunar night and day. Conductivity would also allow astronomers to apply an electric current as needed through electrodes attached to the back of the mirror, to maintain the mirror's parabolic shape against the pull of lunar gravity as the large telescope was tilted from one part of the sky to another.

To make a Hubble-sized moondust mirror, Chen calculates that astronauts would need to transport only 130 pounds (60 kg) of epoxy to the Moon along with 3 pounds (1.3 kg) of carbon nanotubes and less than 1 gram of aluminum. The bulk of the composite material—some 1,300 pounds (600 kilograms) of lunar dust—would be lying around on the Moon for free.

"I think we've discovered a simple method of making big astronomical telescopes on the Moon at 'non-astronomical' prices," Chen declares. "Building a large space-based astronomical observatory using locally available material is something that is possible only on the Moon. That capability can be a major scientific justification for a return to the Moon."

"It’s a great idea in principle, but nothing is simple on the Moon," cautions physicist James F. Spann, who leads the Space and Exploration Research Office at Marshall Space Flight Center. "Launching a big spinning table to the Moon would be a challenge. If we got the machine spinning in the Moon's dusty environment, how long would it take the dust to settle?" he asks.

Sputtering aluminum vapor onto a large mirror in the presence of ambient dust would be another challenge, because "coating mirrors on Earth is done in a clean environment. There are practical issues about manufacturability that must be resolved."

Despite his concerns, Spann sees real promise in Chen's work and he's enthusiastic about starting out to make simple composite structures on the Moon, such as casting basic blocks from epoxy and lunar dust. "The blocks could be useful for building igloos or habitats for the lunar astronauts," he points out. Then astronauts could work up to making rods, tubes, and other composite structures, to learn how epoxy cures in the Moon's vacuum, and how robust the composites are under solar ultraviolet light. In the end, telescopes might prove practical. "We have a lot of work to do to find out what's possible," he says.

One thing is clear: The sky's the limit, especially when you have so much moondust to work with.

Source: by Trudy E. Bell, Science@NASA

Explore further: 'Super blood moon' shines bright across the world

Related Stories

'Super blood moon' shines bright across the world

September 28, 2015

Skygazers were treated to a rare astronomical event Monday when a swollen "supermoon" and lunar eclipse combined for the first time in decades, showing Earth's satellite bathed in blood-red light.

The sun

September 28, 2015

The sun is the center of the Solar System and the source of all life and energy here on Earth. It accounts for more than 99.86% of the mass of the Solar System and it's gravity dominates all the planets and objects that orbit ...

The moon

September 21, 2015

Look up in the night sky. On a clear night, if you're lucky, you'll catch a glimpse of the moon shining in all it's glory. As Earth's only satellite, the moon has orbited our planet for over three and a half billion years. ...

Adventures with Starblinker

September 18, 2015

Observational astronomy is a study in patience. Since the introduction of the telescope over four centuries ago, steely-eyed observers have watched the skies for star-like or fuzzy points of light that appear to move. Astronomers ...

Recommended for you

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Jul 10, 2008
Ummm...old news. This was reported on last month. See www.moonposter.ie/news.htm for up-to-date lunar news :-))

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.