Scientists set out to measure how we perceive naturalness

July 3, 2008

Natural products are highly valued by consumers yet their properties have been difficult to reproduce fully in synthetic materials, placing a drain on our limited natural resources. Until now ...

Scientists at the National Physical Laboratory (NPL) are working towards producing the world's first model that will predict how we perceive naturalness. The results could help make synthetic products so good that they are interpreted by our senses as being fully equivalent to the 'real thing', but with the benefits of reduced environmental impact and increased durability.

NPL began undertaking a real-time experiment at the Royal Society's Summer Science Exhibition. The public were invited to touch and feel 20 wood and wood effect samples and vote on whether they are real or not. The exhibition will now be toured around the UK during the next year to collect a census of data from across the country. This will then be used to help build the first predictive model of how we judge naturalness.

As well as the real-time experiment the travelling exhibition will include a range of interactive exhibits that explore the perceptual process. The first of these will show how we can use body parts to measure an object, as the ancient Egyptians did with the cubit, a standard measure related to the Pharaoh's arm length. There are visual, tactile and auditory experiments designed to demonstrate the limitations of the senses as measurement devices, by exposing how perceptions can be fooled by illusions. Videos will highlight the how the use of Magnetic Resonance Imaging (MRI) brain scans is helping us understand the perceptual process, by allowing researchers to discover which areas of the brain are stimulated when people carry out specific tasks, such as using their vision and touch senses to explore natural and non natural wood samples.

The exhibit is part of a much larger EU-funded project undertaken by a unique set of multidisciplinary of researchers called the Measurement of Naturalness (MONAT). This is one of a series of EU projects trying to 'Measure the Impossible', other projects are investigating subjects as diverse as eyewitness memory, emotional response to computer games, measuring body language and understanding how music induced emotions are processed in the brain.

The MONAT team will work over three years to examine how the perceived naturalness of materials is influenced by their physical properties. It includes:

-- Neuroscientists who scan the brain activity of individuals as they examine different materials
Psychologists who measure the way people perceive different materials when they use their hands or eyes, or both

-- NPL's experts in metrology, data analysis and software modeling, who contribute expertise in making accurate physical measurements of the properties of different materials and will build the model of perceived naturalness.

The physical characteristics of a surface, such as its colour, texture and surface roughness, are being linked to what is happening in a person's brain when they see or touch the surface. Once this is understood it should be possible to accurately predict what we will perceive as natural, and manufacturers will be able to design synthetic products to meet this expectation. The results could have a great impact on materials such as wood, animal skin and furs, marble and stone, plants and even prosthetics.

Ruth Montgomery of the National Physical Laboratory, said: "Our senses combine to identify natural materials. But what are the key factors, is it colour, gloss, smoothness, temperature? This is what our research is trying to establish. The focus of the research is wood, fabric and stone, but once the data is combined the aim is to produce a predictive computer model that will work for other materials. If successful the range of applications would be huge. For instance, synthetic mahogany furniture that is indistinguishable from the natural material, but won't rot or be attacked by woodworm or artificial grass so good that they use it on Wimbledon's Centre Court."

Source: National Physical Laboratory

Explore further: Artificial leaf harnesses sunlight for efficient fuel production

Related Stories

Cell mechanics are more complex than previously thought

August 27, 2015

Cell mechanics are considerably more complex than previously thought and may affect cell structures at various levels. This finding is based on a collaborative research project conducted by an international research team ...

Successful boron-doping of graphene nanoribbon

August 27, 2015

Physicists at the University of Basel succeed in synthesizing boron-doped graphene nanoribbons and characterizing their structural, electronic and chemical properties. The modified material could potentially be used as a ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

Recommended for you

Amateur paleontologist finds rare fossil of fish in Arizona

September 3, 2015

Growing up, Stephanie Leco often would dig in her backyard and imagine finding fossils of a tyrannosaurus rex. She was fascinated with the idea of holding something in her hand that was millions of years old and would give ...

X-rays reveal fossil secrets

September 3, 2015

A sophisticated imaging technique has allowed scientists to virtually peer inside a 10-million-year-old sea urchin, uncovering a treasure trove of hidden fossils.

Early human diet explains our eating habits

August 31, 2015

Much attention is being given to what people ate in the distant past as a guide to what we should eat today. Advocates of the claimed palaeodiet recommend that we should avoid carbohydrates and load our plates with red meat ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rrrn
not rated yet Jul 04, 2008
So one day we can no longer distinguish between a computer and a human.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.