Scientists demonstrate highly directional semiconductor lasers

July 27, 2008
Graduate student Nanfang Yu and Professor Federico Capasso. Photo by Eliza Grinnell/SEAS

Applied scientists at Harvard collaborating with researchers at Hamamatsu Photonics in Hamamatsu City, Japan, have demonstrated, for the first time, highly directional semiconductor lasers with a much smaller beam divergence than conventional ones.

The innovation opens the door to a wide range of applications in photonics and communications. Harvard University has also filed a broad patent on the invention.

Spearheaded by graduate student Nanfang Yu and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, all of Harvard's School of Engineering and Applied Sciences (SEAS), and by a team at Hamamatsu Photonics headed by Dr. Hirofumi Kan, General Manager of the Laser Group, the findings were published online in the July 28th issue of Nature Photonics and will appear in the September print issue.

"Our innovation is applicable to edge-emitting as well as surface-emitting semiconductor lasers operating at any wavelength—all the way from visible to telecom ones and beyond," said Capasso. "It is an important first step towards beam engineering of lasers with unprecedented flexibility, tailored for specific applications. In the future, we envision being able to achieve total control of the spatial emission pattern of semiconductor lasers such as a fully collimated beam, small divergence beams in multiple directions, and beams that can be steered over a wide angle."

While semiconductor lasers are widely used in everyday products such as communication devices, optical recording technologies, and laser printers, they suffer from poor directionality. Divergent beams from semiconductor lasers are focused or collimated with lenses that typically require meticulous optical alignment—and in some cases bulky optics.

To get around such conventional limitations, the researchers sculpted a metallic structure, dubbed a plasmonic collimator, consisting of an aperture and a periodic pattern of sub-wavelength grooves, directly on the facet of a quantum cascade laser emitting at a wavelength of ten microns, in the invisible part of the spectrum known as the mid-infrared where the atmosphere is transparent. In so doing, the team was able to dramatically reduce the divergence angle of the beam emerging from the laser from a factor of twenty-five down to just a few degrees in the vertical direction. The laser maintained a high output optical power and could be used for long range chemical sensing in the atmosphere, including homeland security and environmental monitoring, without requiring bulky collimating optics.

"Such an advance could also lead to a wide range of applications at the shorter wavelengths used for optical communications. A very narrow angular spread of the laser beam can greatly reduce the complexity and cost of optical systems by eliminating the need for the lenses to couple light into optical fibers and waveguides," said Dr. Kan.

Source: Harvard University

Explore further: Nanoscale physics underlie new telecommunications technology

Related Stories

Graphene flakes as an ultra-fast stopwatch

October 27, 2015

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), working with colleagues from the US and Germany, have developed a new optical detector from graphene which reacts very rapidly to incident light of all different ...

Laser ablation boosts terahertz emission

September 17, 2015

From almost instantaneous wireless transfer of huge amounts of data and easy detection of explosives, weapons, or harmful gases, to safe 3-D medical imaging and new advances in spectroscopy —technologies based on terahertz ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Jul 29, 2008
This sounds like a BIG breakthrough.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.