Scientists Discover Which Waters Egg-Laying Mosquitoes Like Best

July 10, 2008

Scientists at Tulane and North Carolina State universities have identified the chemical cues in water that entice yellow fever mosquitoes to lay their eggs. The study is the first to isolate the compounds that the finicky mosquitoes look for to breed in open water containers.The findings are significant because they could lead to the development of targeted lures to control the insects, which also spread dengue fever in more than 100 countries across the globe.

"No one has developed lures that target these species of mosquitoes because no one has been able to identify and isolate the compounds necessary to mass produce them into a commercially available trap," says study co-author Dawn Wesson, asso­ciate professor of tropical medicine at Tulane University. "It’s also important to note that these lures would target egg-laying mosquitoes, which are especially dangerous because they have fed on blood at least once, and could be infected with a virus."

In a paper in this week's issue of Proceedings of the National Academy of Sciences, researchers show that yellow fever mosquitoes (Aedes aegypti) look for water with just the right amount of specific fatty acids associated with bacteria from decaying leaves and other organic debris. The article "Identification of Bacteria and Bacteria-Associated Chemical Cues That Mediate Oviposition Site Preferences by Aedes aegypti" was co-authored by Wesson and North Carolina State University researchers Charles Apperson, Coby Schal, Loganathan Ponnusamy, Ning Xu and Satoshi Nojima.

Yellow fever mosquitoes lay their eggs in human-made containers, usually distributing them in multiple places in residential areas. The study measured mosquitoes' responses to several containers filled with different types of bacteria and bacterial extracts to see which attracted the most egg-laying. Scientists found that the mosquitoes were attracted by a blend of fatty acids and methyl esters created from decaying leaves.

Once scientists discerned specific chemical compounds that stimulated increased egg-laying, they exposed mosquitoes to varied concentrations. High levels of the chemicals discouraged the insects from laying eggs while lower concentration were more convincing. However, the mosquitoes preferred just the right amount of the chemical blend – 10 nanograms in 30 milliliters of water – to lay the most eggs.

Researchers say the right percentages of these chemicals tell the mosquitoes that the microbial content of the water is most favorable for the development of offspring.

A copy of the research paper is available online at: www.pnas.org/content/early/2008/06/27/0802505105.full.pdf+html

Source: Tulane University

Explore further: Mosquito spraying in South Florida scaled back to protect rare butterflies

Related Stories

Professors experiment with handheld DNA sequencer

June 11, 2015

In February, when snowfall closed campus and kept her away from the lab, a Virginia Commonwealth University professor who was stuck at home did the kind of work typically reserved for scientists with ample lab space, large ...

Pests are easier to combat in habitats rich in species

April 1, 2015

A diverse and species-rich agricultural landscape is also beneficial to farmers. This isn't just because there are plenty of pollinating insects, creepy crawly pest controllers and other useful helpers. Scientists at the ...

Recommended for you

Can genes make us liberal or conservative?

August 4, 2015

Aristotle may have been more on the money than he realised in saying man is a political animal, according to research published Wednesday linking genes with liberal or conservative leanings.

Galaxies show appetite for growth

August 4, 2015

The extent to which galaxies consume one another has been revealed in research. Findings from the study help to explain how galaxies such as the Milky Way were formed.

Robo-whiskers mimic animals exploring their surroundings

August 4, 2015

Many mammals, including seals and rats, rely on their whiskers to sense their way through dark environments. Inspired by these animals, scientists working at the University of Illinois at Urbana-Champaign and Illinois' Advanced ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.