NIST Trumps the Clumps: Making Biologic Drugs Safer

July 23, 2008
NIST Trumps the Clumps: Making Biologic Drugs Safer
NIST researchers have developed methods and adapted techniques that will allow the pharmaceutical industry to monitor the formation of potentially dangerous aggregates in protein-based drugs. Image Copyright: IoanaDrutu

Scientists at the National Institute of Standards and Technology have developed a technique to measure the formation of clumps of proteins in protein-based pharmaceuticals. This first systematic study clarifies the conditions under which scientists can be assured that their instruments are faithfully measuring the formation of protein aggregates, a major concern because of its impact on quality control and safety in biologic drug manufacturing.

Proteins, a main constituent of many new drugs, are large molecules that have a tendency to stick to each other and form clumps during their manufacture. These clumps have been associated with severe immune responses. In at least one case, the inadvertent creation of protein clumps during the processing of a drug to treat anemia caused an immune reaction in about 250 patients that destroyed their ability to produce red blood cells. Those patients now have to receive blood transfusions every few days to replenish these vital cells.

Events such as this led the Food and Drug Administration to call for the development of sensitive and rapid measurement tools that can detect aggregation of protein drugs during the manufacturing phase. To address the problem, NIST researchers hit upon the idea of adapting a technique known as electrospray differential mobility analysis (ES-DMA).

Commonly used to size soot and other aerosols, ES-DMA uses an electric current to vaporize a solution of proteins into tiny charged water droplets, each containing a single protein molecule or protein aggregate. Once these droplets evaporate, the charged proteins and protein aggregates are drawn into an oppositely charged tube. By making controlled adjustments to the voltage of the tube and the velocity of the air flowing through it, researchers can collect particles of a specific size, allowing the proteins and protein aggregates to be precisely sorted and counted.

The NIST team adapted the technique for biopharmaceutical applications. According to researcher Leonard Pease, ES-DMA is tricky to get right, but the NIST team was able to define the conditions needed to electrospray proteins and protein aggregates reliably and repeatedly. NIST scientists favor ES-DMA for its ability to quickly resolve particle sizes differing by as little as 0.2 nanometers, to provide a direct measure of particle size distributions, and to accept bioreactor samples with significantly reduced preparation requirements.

In addition to sizing proteins, Pease said the technique could also be used to accurately size many different types of particles used in medicine, such as the viruses used in the human papillomavirus (HPV) vaccine and gene therapy. “The adaptation of this technology is just one of many excellent examples of how NIST seeks out and works with U.S. industry,” says Willie E. May, director of the NIST Chemical Science and Technology Laboratory.

Citatioin: L. Pease, J. Elliott, D. Tsai, M. Zachariah and M. Tarlov. Determination of protein aggregation with differential mobility analysis: application to IgG antibody. Biotechnology and Bioengineering. Available online at dx.doi.org/10.1002/bit.22017.

Provided by NIST

Explore further: NIST releases new 'family' of standardized genomes

Related Stories

NIST releases new 'family' of standardized genomes

September 16, 2016

With the addition of four new reference materials (RMs) to a growing collection of "measuring sticks" for gene sequencing, the National Institute of Standards and Technology (NIST) can now provide laboratories with even more ...

An optical method of sorting nanoparticles by size

August 18, 2016

NIST scientists have devised and modeled a unique optical method of sorting microscopic and nanoscopic particles by size, with a resolution as fine as 1 nanometer (nm) for particles of similar composition.

Recommended for you

Life in ancient oceans enabled by erosion from land

September 26, 2016

As scientists continue finding evidence for life in the ocean more than 3 billion years ago, those ancient fossils pose a paradox. Organisms, including the single-celled bacteria living in the ocean at that early date, need ...

Photons do the twist, and scientists can now measure it

September 26, 2016

Researchers in the University of Minnesota's College of Science and Engineering have measured the twisting force, or torque, generated by light on a silicon chip. Their work holds promise for applications such as miniaturized ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.