New nanotech research to enhance future digital imaging

Jul 10, 2008

A team of researchers from Northeastern’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Led by Sri Sridhar, Distinguished Professor and Chair of Physics at Northeastern University, a team of researchers from the university’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Utilizing nanomanufacturing processes, the researchers were able to develop an optical microlens with a step-like surface, instead of a smooth surface, that has the capacity to operate at infrared frequencies using the novel phenomenon of negative index refraction.

The team of researchers involved with this project includes Wentao Lu, Ph.D., Bernard Didier F. Casse, Ph.D., and Yongjiang Huang, all from Northeastern. Their findings were published in a recent edition of the journal, Applied Physics Letters.

By using nanolithography, a manufacturing technique used for electronic circuits, the team was able to fabricate this planoconcave lens in the nanoscale. These microlenses function in the infrared frequency range, which is used for optical communications, and use the novel phenomenon of negative refraction, which is not found to occur in natural materials, but can be created in artificial metamaterials. Microlenses are a critical component of optoelectronic devices, which utilize the flow of light rather than of conventional currents as is used in conventional electronics. The technology of these optical circuits has the capacity to create superior devices for data capturing and storage, and for producing high quality, high pixel count images.

“These nano-optical components are essential for superior optical transmission and reception of data that will be used in the future generation of imaging and communication devices,” explained Sridhar. “Our ultimate goal is to integrate both optical and electronic devices onto a single chip, creating a single platform that utilizes both light and electrons with the potential to significantly increase the quality of circuits that are at the heart of all digital electronic devices today.”

Source: Northeastern University / PhysOrg.com

Explore further: New nanogenerator harvests power from rolling tires

Related Stories

A novel microscope for nanosystems

6 hours ago

Nanomaterials play an essential role in many areas of daily life. There is thus a large interest to gain detailed knowledge about their optical and electronic properties. Conventional microscopes get beyond ...

Can heat be controlled as waves?

Jun 23, 2015

A growing interest in thermoelectric materials—which convert waste heat to electricity—and pressure to improve heat transfer from increasingly powerful microelectronic devices have led to improved theoretical ...

Recommended for you

Nanowires could be the LEDs of the future

Jun 24, 2015

The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light. The researchers studied nanowires using X-ray microscopy and with this ...

Researchers detect spin precession in silicon nanowires

Jun 24, 2015

Scientists at the U.S. Naval Research Laboratory (NRL) have reported the first observation of spin precession of spin currents flowing in a silicon nanowire (NW) transport channel, and determined spin lifetimes ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.