Can microorganisms be a solution to the world's energy problems?

July 10, 2008

Microorganisms once reigned supreme on the Earth, thriving by filling every nook and cranny of the environment billions of years before humans first arrived on the scene. Now, this ability of microorganisms to grow from an almost infinite variety of food sources may play a significant role in bailing out society from its current energy crisis, according to the Biodesign Institute's Bruce Rittmann, Rosa Krajmalnik-Brown, and Rolf Halden.

In a new issue on "microbial ecology and sustainable energy" in the prestigious journal Nature Reviews Microbiology, the Biodesign researchers outline paths where bacteria are the best hope in producing renewable energy in large quantities without damaging the environment or competing with our food supply.

Two distinct, but complementary approaches will be needed. The first is to use microbes to convert biomass to useful energy. Different microorganisms can grow without oxygen to take this abundant organic matter and convert it to useful forms of energy such as methane, hydrogen, or even electricity. The second uses bacteria or algae that can capture sunlight to produce new biomass that can be turned into liquid fuels, like biodiesel, or converted by other microorganisms to useful energy. Both approaches currently are intensive areas of biofuel research at the Biodesign Institute, which has a joint project with petroleum giant BP to harvest photosynthetic bacteria to produce renewable liquid fuels, such as biodiesel.

What is it about bacteria that make them an attractive tool for a bioenergy researcher? Consider that one species of bacteria, the human gut bacterium E. coli, has become the workhorse of the multi-trillion dollar global biotech industry. Might other unearthed microbial treasures have the same potential in bioenergy applications?

The Biodesign team, in their Nature Review Microbiology perspective article, outlines the prospects for such applications. They believe the future of microbial bioenergy is brightened by recent advancements in genome technologies and other molecular-biology techniques.

Unlike the E. coli situation, using just one species may not work well for bioenergy, since, in nature, bacteria do not grow in isolation. In other words, no bacterium is an island. The very biodiversity that fills the Earth with bacteria and offers great bioenergy potential also presents a challenge for engineers. Even if one picks the ideal "bug," growing, maintaining, and optimizing conditions for its use in bioenergy applications remains a daunting challenge in terms of scalability and reliability.

"Microbial communities that are used to harvest energy must be resilient to fluctuations in environmental conditions, variations in nutrient and energy inputs and intrusion by microbial invaders that might consume the desired energy product," say the authors. The key to large-scale success in microbial bioenergy is managing the microbial community so that that the community delivers the desired bioenergy product reliably and at high rate.

In the absence of these molecular techniques, the authors state, our understanding of methanogenic communities progressed through slow, incremental advances over several decades. Today, society cannot wait decades for new bioenergy sources. Fortunately, an array of pre-genomic, genomic, and post-genomic tools is available to understand microorganisms involved in bioenergy production. Taking full advantage of these tools will greatly speed up scientific and technological advances, which is what society most needs.

Genomics provides the base sequence of the entire DNA in an organism, and the complete genome reveals all the possible biological reactions that a microorganism can carry out. In the past, complete genomes were only obtained for those microorganisms that could be isolated into pure culture, but it is now possible to sequence the genomes of uncultivated microorganisms using metagenomics.

To date, approximately 75 genomes are available from microorganisms that have a role in bioenergy production. These include 21 genomes from methane producing archaea, 24 genomes from bacteria that can produce hydrogen or electricity, and 30 genomes from cyanobacteria that are potential biodiesel producers. At least half of the completed microbial genomes that are relevant to bioenergy were released in the past 2 years, and more than 80 bioenergy-related genomes are currently being sequenced.

A great example is the Biodesign Institute's biofuel bacterium, Synechocystis sp. PCC 6803, the first bioenergy-relevant microorganism to be sequenced; its genome was released in 1995. This photosynthetic bacterium features membranes with high lipid (i.e., oil) content, which makes it an excellent biodiesel candidate.

The growing pool of genomic information provides molecular targets that support pre-genomic and post-genomic investigations, both of which provide essential information on what microorganisms are present in the community and what metabolic reactions they are carrying out. With genomics combined with high-throughput DNA sequencing and proteomics, our understanding of bioenergy-producing microorganisms should surge.

Because success with microbial bioenergy demands in-depth knowledge of the complex microbial communities that normally develop, a wide range of pre-genomic, genomic, and post-genomic tools is needed. The Biodesign team has unique expertise on using each kind of tool, and it's perspective article provides needed information about these tools and how they can be used to unravel the structures and functions of microbial communities involved in renewable bioenergy.

The authors conclude, "Information from these tools, when properly integrated with advanced engineering tools and material, should accelerate the rate at which microbial bioenergy processes can be converted from the realm of intriguing science to real world practice."

Source: Arizona State University

Explore further: A row-bot that loves dirty water

Related Stories

A row-bot that loves dirty water

November 23, 2015

Polluted water can at times make swimming in the sea or a pool risky, on the other hand aquatic organisms such as water boatman need the nutrients in dirty water to feed on. Taking inspiration from water beetles and other ...

Marginal soil can make for good biofuel crops

October 23, 2015

Switchgrass, a perennial native to the tallgrass prairie, is one of the most promising bioenergy crops in the United States, with potential to provide high-yield biomass on marginal soils unsuitable for traditional agricultural ...

Bioenergy crops could store more carbon in soil

October 9, 2014

( —In addition to providing renewable energy, grass crops like switchgrass and miscanthus could store some of the carbon they pull from the atmosphere in the soil, according to a new study by University of Illinois ...

Scientists work to plug microorganisms into the energy grid

May 18, 2009

The answer to the looming fuel crisis in the 21st century may be found by thinking small, microscopic in fact. Microscopic organisms from bacteria and cyanobacteria, to fungi and microalgae, are biological factories that ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.