Mars Sample Return: bridging robotic and human exploration

July 21, 2008
Artist's view of the Mars Sample Return (MSR) ascent module lifting off from Mars' surface with the Martian soil samples. Credits: ESA

The first robotic mission to return samples to Earth from Mars took a further step toward realisation with the recent publication of a mission design report by the iMARS Working Group. The report, defines key elements of the future internationally-funded mission involving the cooperation of ESA, NASA and other national agencies.

iMARS, which stands for the International Mars Architecture for the Return of Samples is a committee of the International Mars Exploration Working Group made up of scientists, engineers, strategic planners, and managers. The report, which comes after months of deliberation, outlines the scientific and engineering requirements of such an international mission to be undertaken in the timeframe 2020-2022.

The Mars Sample Return mission is an essential step with respect to future exploration goals and the prospect of establishing a future human mission to Mars. Returned samples will increase the knowledge of the properties of Martian soil and contribute significantly to answering questions about the possibility of life on the Red Planet. This mission will improve our understanding of the Mars environment to support planning for the future human exploration.

The iMARS report outlines the mission’s scientific objectives including the types and quantities of samples to be returned from Mars; the different mission elements (launchers, spacecraft, Mars lander, a rover and a Mars ascent vehicle) and ground processing facilities necessary to contain and analyse the received samples in a protected environment. A preliminary timeline for the mission and approximate budget has also been defined.

“Exploration is gaining momentum year by year, as is the experience and knowledge gained by ESA and its international partners in this area” said Bruno Gardini ESA’s Exploration Programme Manager in the Directorate of Human Spaceflight and iMARS study leader. “The information we gain from current Mars missions and from the ISS provide a basis not only for future robotic missions but also a stepping stone for the human exploration missions.”

Source: ESA

Explore further: NASA Mars orbiter preparing for Mars lander's 2016 arrival

Related Stories

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

Could 'windbots' someday explore the skies of Jupiter?

July 23, 2015

Among designers of robotic probes to explore the planets, there is certainly no shortage of clever ideas. There are concepts for robots that are propelled by waves in the sea. There are ideas for tumbleweed bots driven by ...

Recommended for you

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.