New logic: the attraction of magnetic computation

July 7, 2008
New logic: the attraction of magnetic computation
Spinning into control with next-generation microchip-making. © Jennyhorne - Dreamstime.com

European researchers are the first to demonstrate functional components that exploit the magnetic properties of electrons to perform logic operations. Compatible with existing microtechnology, the new approach heralds the next era of faster, smaller and more efficient electronics.

In the 1960s, Henry Moore observed that it took around 18 months for silicon chip manufacturers to shrink their technology and fit twice as many transistors into the same area of silicon.

But Moore's Law is beginning to lose its hold. According to the International Technology Roadmap for Semiconductors (ITRS), devices based on silicon-only technology will soon reach the limits of miniaturisation and power efficiency.

Chip designers and manufacturers are looking for new materials and techniques that will drive forward a new era of electronic devices and applications. An EU-funded project called MAGLOG has demonstrated for the first time the possibility of producing processors from ferromagnetic materials that are faster, smaller and more efficient than conventional silicon chips.

More than 150 years ago, Lord Kelvin found that the electrical resistance of iron changed when it was in an external magnet field, and that the change depended on the direction of the field.

This magnetoresistance effect was very small, but in 1988 Peter Grünberg and Albert Fert – joint Nobel Prize for Physics winners in 2007 – independently developed materials which exhibited much larger magnetoresistance. Their work spawned a new field of science, magnetoelectronics, or spintronics, which promises significant advances in IT and computing.

Magnetoelectronics exploit the magnetic properties or spin of electrons as well as their charge. In the presence of a magnetic field the electrons may point ‘left’ or ‘right’, which can represent bits of data, such as the binary digits 0 and 1.

MAGLOG brought together leaders in the field of magnetoelectronics to adapt the technology not just for data storage and memory, but also for computation. The project partners describe it as “memory that can think”.

The input signals at each magnetic logic gate change the magnetisation of physical structures within the cell. The magnetic field affects the electrical resistance of the structures which can be measured with a readout of ‘True’ or ‘False’, or in binary a 1 or 0.

“The main goal of MAGLOG was to show that magnetic logic gates could be produced on a conventional complementary metal-oxide-semiconductor (CMOS) platform,” says the project coordinator Guenter Reiss. “For successful commercialisation, it is critical that this novel method of data processing can be integrated into conventional chip technologies.”

Swift thinking

One production approach uses lithography to etch structures within the ferromagnetic material to produce zones where the magnetic orientation of the material ‘flips’.

This switching between two states depends on input signals and thereby enables logical operations to be performed. Cells fabricated in this way use no silicon and require no multilayer processing – they can be manufactured at very low cost on flexible materials.

Another successful production approach for magnetic logic gates remains confined to high-performance computing applications that require low power consumption, for instance battery operated devices such as mobile phones.

This form of magnetic logic gate uses structures called magnetic tunnelling junctions. Each junction is manufactured from alternating layers of ferromagnetic materials and insulators. This type of gate is programmable – it is possible to change the operator within the logic gate, for example switching an ‘and’ gate to an ‘or’ function.

“The industry is crying out for reconfigurable computing to make microprocessors more efficient,” says Reiss. “We have one of the best demonstrations of reprogramming logic gates ‘on the fly’ and could enhance the performance of a central processing unit by a factor of 10 to 100.”

Magnetic logic has other advantages over conventional microprocessors. First, such processors are ‘non-volatile’, meaning that they retain their output state even when the current is switched off.

“When you switch it on again, you are exactly where you were when the power went off,” says Reiss. “This could greatly reduce or avoid the need for booting up, which can take a long time, especially with small devices that have to load a lot of information from memory.”

Magnetoelectronic components generally consume less power than their conventional counterparts, but the non-volatility can help chips cut their consumption to the bare minimum by temporarily shutting down zones that are not in use.

Attractive market

The project was originally funded for three years to build a very simple demonstrator. The team received a six-month extension for further research into the manufacture of working logic gates integrated on a CMOS wafer.

Although MAGLOG has now ended, the partners continue to work together to bring about the birth of this next-generation microprocessor technology.

Ingenia Technology, a spin-off company from project partner Imperial College, is investigating applications for domain wall structures, such as intelligent smart cards. The cards would be able to perform a degree of data processing within the smart card's chip. This in-built ‘intelligence’ provides the card with an additional layer of security.

The partners also hope to enter the market for the application-specific integrated circuits (ASIC) typically found in mobile phones. These are chips designed for a specific application and often customised for individual customers, making them expensive.

The programmability of magnetic tunnelling junction logic gates could also allow chip designers to manufacture generic chips that are then customised through logic gate programming.

“From a generic ASIC chip you could configure it with its unique identity,” says Reiss. “We know of a project in Japan and IBM are working on this, but this is a market with huge potential. There's a tremendous need for smaller chip dimensions and less power consumption, and we think that chips with magnetic logic are the answer.”

MAGLOG received funding from the EU's Sixth Framework Programme for research.

Source: ICT Results

Explore further: After 85-year search, massless particle with promise for next-generation electronics found

Related Stories

Engineers develop a computer that operates on water droplets

June 9, 2015

Computers and water typically don't mix, but in Manu Prakash's lab, the two are one and the same. Prakash, an assistant professor of bioengineering at Stanford, and his students have built a synchronous computer that operates ...

Researchers exploring spintronics in graphene

May 6, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric fields, the result ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

menkaur
not rated yet Jul 08, 2008
seems like a really cool stuff....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.