Researchers discover link between DNA palindromes and disease

July 14, 2008

In the past 10 years, researchers in genome stability have observed that many kinds of cancers are associated with areas where human chromosomes break. More recently, scientists have discovered that slow or altered replication causes chromosomal breaking. But why does DNA replication stall?

In a Tufts University study published in the July 14 issue of "Proceedings of the National Academy of Sciences," a team of biologists have found a relationship between peculiar DNA sequences named palindromes and replication delays.

Sergei Mirkin, White Family Professor of Biology at Tufts' School of Arts and Sciences, along with his graduate student Irina Voineagu and collaborators Kirill Lobachev and Vidhya Narayanan from the Georgia Institute of Technology explored the heretofore elusive function of long palindromes in DNA replication. Mirkin's research was funded by the National Institutes of Health.

Mirkin and his team studied palindrome behavior in bacterial, yeast and mammalian cells because they allowed them to monitor DNA replication in a more detailed way than looking at actual human chromosomes. Based on previous studies in model systems, they expect their results to be applicable for human chromosomes.

Abnormally shaped DNA blocks molecule's replication

In the context of everyday life, palindromes are quite common, said Mirkin. They are words, phrases, numbers or other sequences of units that read the same way in either direction. "We all enjoy palindromes in everyday language, such as 'A man, a plan, a canal – Panama!' They are short, make perfect sense and are easy to remember," he explained. The problems begin when they become longer. "They stop making sense," he said. "For example, say 'A man, a plan, a cat, a ham, a yak, a yam, a hat, a canal-Panama!'"

Past DNA research had shown that long palindromes change the shape of the molecule from a double helix into a hairpin or cruciform like structure in a test tube. It was not known, however, whether these changes can occur inside cells and, if so, affect DNA functioning. In this study, the researchers found that large palindromes stall the replication machinery.

"Replication is carried out by a complex and sophisticated machinery, which has many levels of checks and balances to prevent 'typos' from happening. Long DNA palindromes, however, can occasionally jam this powerful replication machinery," Mirkin explained. The researchers were also able to pinpoint the exact structure causing DNA malfunction. "In all cases it was the formation of the hairpin-like DNA structure in a palindrome that caused the replication to stall," he said.

Other scientists have previously found that when replication slows down, chromosomes break. "Stalled DNA replication could result in the chromosomal breakage during cell division, explaining why DNA palindromes are genomic weak spots."

The study of yeast cells yielded an additional finding. Mirkin and his team found that two proteins within the cell - Tof1 and Mrc1 - enabled replication to proceed through the hairpin-like DNA structures. "These proteins might be key players in protecting the genome from breaking at DNA palindromes," said Mirkin.

Mirkin said he has begun experiments to see if the same results will be observed with human homologues of these proteins.

Source: Tufts University/

Explore further: Supercomputers surprisingly link DNA crosses to cancer

Related Stories

Puzzling question in bacterial immune system answered

January 29, 2014

( —A central question has been answered regarding a protein that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering. A team of researchers with the ...

Bacterial security agents go rogue

April 14, 2013

CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system. The results are scheduled for publication Sunday, ...

Recommended for you

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (1) Jul 14, 2008
DNA... and?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.