FLASH Imaging Redux: Nano-Cinema is Born

July 8, 2008
Soft X-rays from the FLASH laser capture the action as a tiny silicon nitride wafer explodes.

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precursor to research that will be conducted using SLAC’s Linac Coherent Light Source (LCLS).

The experiments, carried out by a team of researchers that included SLAC scientists Sebastien Boutet, Janos Hajdu and Mike Bogen, used the Free-Electron Laser in Hamburg (FLASH laser) at Deutsches Elektronen-Synchrotron (DESY) in Germany.

To create the images, an artificial sample—a silicon nitride wafer less than one thousandth the width of a human hair and etched with a simple nanoscale pattern—was shot with an optical laser, which ultimately caused the tiny wafer to explode. But less than a few billionths of a second (picoseconds) after the first laser—before the sample actually had a chance to disintegrate—a second, soft X-ray laser captured an image of the sample as the disintegration process began.

By repeating the experiment with slight variations in timing between the two lasers, the researchers captured a sequence of images that follow the changes occurring in the sample as it explodes.

Similar to FLASH, the LCLS at SLAC will create ultrafast pulses of coherent X-ray laser light. Pulses from the LCLS, however, will fall in the hard X-ray range, which has a much shorter wavelength, enabling single-shot imaging of even smaller objects, on the scale of individual molecules.

Source: by Brad Plummer, SLAC

Related Stories

Recommended for you

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.