Researches identify herpesvirus proteins that target key cellular processes

July 11, 2008

A study published July 11th in the open-access journal PLoS Pathogens suggests that herpesviruses use multiple strategies to manipulate important components of the host cell nuclear environment during infection. The study, conducted by researchers at the University of Toronto in collaboration with Affinium Pharmaceuticals Inc., provides novel insights into the potential functions of over 120 previously uncharacterized viral proteins.

Most people are infected with the three human herpesviruses that were the subject of this study; namely herpes simplex virus (type 1), Epstein-Barr virus, and cytomegalovirus. Herpesviruses have complex life cycles due to their adept manipulation of the host cell environment. Although often asymptomatic, herpesviruses can cause life-threatening diseases. In order to provide a more complete understanding of how these viruses alter host cells, the researchers developed a system to examine each viral protein individually in human cells.

The researchers investigated over 230 individual proteins from the three herpesviruses. They focused on 93 identified viral proteins that localized to the cell nucleus and altered key cellular components that regulate gene expression, cell growth and death, and antiviral responses.

Cells depend on nuclear structures called PML bodies to control cell proliferation and survival, to ensure damaged DNA is repaired, and to inhibit virus replication. 24 of the nuclear viral proteins, several of which had no previously assigned function, were found to disrupt or reorganize PML bodies, suggesting that herpesviruses employ multiple strategies for manipulating this key regulator of essential cellular processes.

Further studies will be needed to determine how the identified viral proteins function in the context of viral infection, but this research provides a starting point for investigating how these proteins affect important processes of the cell nucleus.

Source: Public Library of Science

Explore further: Protein-based sensor could detect viral infection or kill cancer cells

Related Stories

A new single-molecule tool to observe enzymes at work

September 28, 2015

A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. ...

Study adds to evidence that viruses are alive

September 25, 2015

A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report. The study offers the first reliable method for tracing viral evolution back to ...

Enzyme helps detect foreign DNA

September 11, 2015

The human immune system responds to DNA from pathogens by triggering the production of a defense molecule known as interferon. A research team led by A*STAR scientists has now pinpointed an enzyme integral to this process, ...

How nature punches back at giant viruses

September 4, 2015

(—What have viruses ever done for humans? The question is debatable, but given the prevalence of highly contagious, and sometimes life-threatening illnesses caused by viruses, it's fair to say that most people ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.