Genomics Research Focuses on Rice Variety Improvement

July 1, 2008

Crop varieties can be improved through the study of genomics without creating genetically transformed varieties. That is the mission of a multistate research project led by the University of Arkansas System’s Division of Agriculture.

RiceCAP, or Rice Coordinated Agricultural Project, is funded by a $5 million grant from the U.S. Department of Agriculture. Jim Correll, a Division of Agriculture professor of plant pathology, coordinates projects by 25 principal investigators in 12 states, the International Rice Research Institute in the Philippines and the International Center for Tropical Agriculture in Colombia.

“Genomics is the study of the coded information about an organism stored in its DNA,” Correll said. “The RiceCAP project is conducting genomics research to develop news tools for conventional plant breeders.”

RiceCAP also has an educational and outreach mission, and has produced a five-minute video podcast that provides an overview of the project. The podcast is on the RiceCAP Web site at www.ricecap.uark.edu/outreach_downloads.htm .

Plant breeding, as practiced since the 19th century, is the process of crossbreeding plants to develop an improved variety. The process can take seven to 10 years from the first cross of parent plants to the release of an improved variety. The University of Arkansas Division of Agriculture has one of the nation’s leading rice-breeding programs based at the Rice Research and Extension Center near Stuttgart.

Breeders now use genetic markers identified through genomics research to speed up the process. Markers reveal the presence of genetic material linked to a particular genetic trait, which allows breeders to more efficiently screen plants for crossbreeding.

“Markers are genomic tools, but that doesn’t mean we are developing genetically engineered rice varieties,” Correll says. That point is important, because many export customers for Arkansas rice will not accept genetically engineered rice, he says.

RiceCAP is focused on two genetic traits that have been difficult for breeders to improve — resistance of rice plants to the fungal disease sheath blight and milling yield, or the portion of rice kernels that remain whole after milling. Both are difficult problems because they are controlled by environmental factors as well as genetics and because they involve multiple genes, Correll says.

As they identify new markers for use by plant breeders, RiceCAP scientists are also increasing the understanding of the genomics of rice in general and sheath blight resistance and milling yield in particular, Correll says.

Source: University of Arkansas

Explore further: Scientists characterize carbon for batteries

Related Stories

Scientists characterize carbon for batteries

July 14, 2014

Lithium-ion batteries could benefit from a theoretical model created at Rice University and Lawrence Livermore National Laboratory that predicts how carbon components will perform.

Seeking a splice for better rice

July 13, 2012

Every organism produces a staggering variety of molecules, each with its own particular biological function. Complex interplay between genetic and environmental factors determines the production levels for each compound. ...

Emeritus: On the trail of aflatoxin

December 6, 2010

In the spring of 1960, a mysterious liver disease killed hundreds of thousands of turkeys in the United Kingdom. The outbreak was soon traced to ground peanut meal, shipped from Brazil and contaminated with mold that produces ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.