Gene directs stem cells to build the heart

July 2, 2008

Researchers have shown that they can put mouse embryonic stem cells to work building the heart, potentially moving medical science a significant step closer to a new generation of heart disease treatments that use human stem cells.

Scientists at Washington University School of Medicine in St. Louis report in Cell Stem Cell that the Mesp1 gene locks mouse embryonic stem cells into becoming heart parts and gets them moving to the area where the heart forms. Researchers are now testing if stem cells exposed to Mesp1 can help fix damaged mouse hearts.

"This isn't the only gene we'll need to get stem cells to repair damaged hearts, but it's a key piece of the puzzle," says senior author Kenneth Murphy, M.D., Ph.D., professor of pathology and immunology and a Howard Hughes Medical Institute investigator. "This gene is like the first domino in a chain: the Mesp1 protein activates genes that make other important proteins, and these in turn activate other genes and so on. The end result of these falling genetic dominoes is your whole cardiovascular system."

Embryonic stem cells have created considerable excitement because of their potential to become almost any specialized cell type. Scientists hope to use stem cells to create new tissue for treatment of a wide range of diseases and injuries. But first they have to learn how to coax them into becoming specialized tissue types such as nerve cells, skin cells or heart cells.

"That's the challenge to realizing the potential of stem cells," says Murphy. "We know some things about how the early embryo develops, but we need to learn a great deal more about how factors like Mesp1 control the roles that stem cells assume."

Mesp1 was identified several years ago by other researchers, who found that it was essential for the development of the cardiovascular system but did not describe how the gene works in embryonic stem cells.

Using mouse embryonic stem cells, Murphy's lab showed that Mesp1 starts the development of the cardiovascular system. They learned the gene's protein helps generate an embryonic cell layer known as the mesoderm, from which the heart, blood and other tissues develop. In addition, Mesp1 triggers the creation of a type of cell embryologists recently recognized as the heart's precursor.

They also found that stem cells exposed to the Mesp1 protein are locked into becoming one of three cardiovascular cell types: endothelial cells, which line the interior of blood vessels; smooth muscle cells, which are part of the walls of arteries and veins; or cardiac cells, which make up the heart.

"After they are exposed to Mesp1, the stem cells don't make any decisions for several days as to which of the three cell types they're going to become," Murphy notes. "The cues that cause them to make those commitments come later, in the form of proteins from other genes."

Researchers already know a number of the genes that shape the heart later in its development. Murphy plans to start tracing Mesp1's effects from gene to gene—following the falling genetic dominoes, which branch out into the pathways that form the three cardiac cell types.

"If we can find gene combinations that only make endothelium or cardiac or smooth muscle, then that could be applied to tailoring embryonic stem cells for therapies later on," he says.

Source: Washington University

Explore further: A snapshot of stem cell expression

Related Stories

A snapshot of stem cell expression

October 1, 2015

Researchers on the Wellcome Genome Campus reveal new genes involved in stem cell pluripotency, new subpopulations of cells and new methods to find meaning in the data. Published in Cell Stem Cell, the findings have implications ...

Are the blueprints for limbs encoded in the snake genome?

October 1, 2015

Hundreds of millions of years ago, a common ancestor of mammals, birds, and reptiles evolved a phallus. We don't know much about phallus evolution (external genitalia generally don't mineralize, so the fossil record is of ...

Learning how muscle cells feel the pull of gravity

September 30, 2015

People can easily feel the presence - or absence - of gravity. Our individual cells actually may be able to sense gravity, too, and that ability could play a role in the loss of muscle that occurs when humans spend time in ...

Recommended for you

From a very old skeleton, new insights on ancient migrations

October 9, 2015

Three years ago, a group of researchers found a cave in Ethiopia with a secret: it held the 4,500-year-old remains of a man, with his head resting on a rock pillow, his hands folded under his face, and stone flake tools surrounding ...

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Image: Sentinel-1A captures Azore islands

October 9, 2015

This Sentinel-1A radar image was processed to depict water in blue and land in earthen colours. It features some of the Azore islands about 1600 km west of Lisbon, including the turtle-shaped Faial, the dagger-like Sao Jorge ...

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.